poj 1095 题解(卡特兰数+递归
题意:给出一个二叉树的编号,问形态。
编号依据
1:如果二叉树为空,则编号为0;
2:如果二叉树只有一个节点,则编号为1;
3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编号;
4:如果一棵含有m个节点的二叉树(左子树为L,右子树为R)的编号为n,要想其它含有m个节点的二叉树的编号如果大于n,则需要满足两个条件中的任意一个:1、左子树的编号大于L的左子树的编号等于L的编号,但是右子树的编号大于R的编号。(大概就是先将右子树的个数填满将变幻完后再将右子树的点向左子树转移
一道卡特兰数的题。。总的来说代码难度不高,但是思维难度还是挺高的,首先二叉树形态有几种就很想然得想到用卡特兰数啦。
递推公式
$ cat[i]=cat[i-1]* ( 4 * i-2)/(i+1) \ \ \ \ \ cat[1]=1,cat[0]=1 $
不了解的自行百度卡特兰数
我们首先可以设一棵二叉树可能的形态种类数为 $ f[n] $ 那么对于左子数所含有的节点数 $ 0<=i<=n-1 $ 都有 $ f[n]= \sum_{i = 0}^{n-1}\ f[i] * f[n-i-1] $
首先我们设当前含有x个节点的二叉树第order个排序通给定数 $ n $ 计算出当前有几个节点并且当前是第几个排序 $ order=n-Catalan(0)+Catalan(1)+...+Catalan(i-1)) \ \ \ \ (Catalan(i)>=n)) $
然后我们再去考虑二叉树中左子树有多少个节点,右子树有多少节点。由题意知初始状态下,左子树为空,所有的节点均在右子树上并且所有节点只有右孩子,随着右子树的变化完后,右子树拿一个节点到左子树,然后再变化。这个过程就像时钟一样,右子树是分钟,左子树是时针,右子树的变化走满了,就开始进位,然后左子树再变化。当然这里使用的进制当然就是卡特兰数进制呀。然后只要算出左右此时的节点个数以及是第几个排序。之后层层递归下去即可。
代码
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=500000010;
int n;
long long cat[40],sum[40];
void star(){
cat[0]=cat[1]=1;
for(int i=2;i<35;++i){
cat[i]=cat[i-1]*(4*i-2)/(i+1);
}
return;
}
void find(int x,int order){
if(x==1){
printf("X");
return;
}int i,cnt=0;
for(i=0;cnt<order;i++){//保证左子树尽可能小
cnt+=cat[i]*cat[x-i-1];
}i--;
int l=i,r=x-l-1;
int neworder=order-(cnt-cat[l]*cat[r]);//减去其中的个数
if(l>0){
printf("(");
find(l,(neworder-1)/cat[r]+1);//减一然后在后面加一相当于判断是否有余数,有余数加一
printf(")");
}printf("X");
if(r>0){
printf("(");
find(r,(neworder-1)%cat[r]+1);//同上
printf(")");
}
}
int main(){
star();
while(scanf("%d",&n)&&n){
int i,cnt=0;
for(i=1;cnt<n;++i){
cnt+=cat[i];
}i--;
find(i,n-(cnt-cat[i]));
printf("\n");
}
return 0;
}
poj 1095 题解(卡特兰数+递归的更多相关文章
- HDU-4828 卡特兰数+带模除法
题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...
- poj 1095 Trees Made to Order 卡特兰数
这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html 解体思路详见:http://blog.csdn. ...
- FZU 1064 教授的测试(卡特兰数,递归)
Problem 1064 教授的测试 Accept: 149 Submit: 364 Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Des ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- [HNOI2009]有趣的数列 题解(卡特兰数)
[HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...
- [AHOI2012]树屋阶梯 题解(卡特兰数)
[AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营. ...
- [NOIP2003]栈 题解(卡特兰数)
[NOIP2003]栈 Description 宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n. 现在可以进行两种操作: 1.将一个数,从操作数序 ...
- POJ 2084 Game of Connections 卡特兰数
看了下大牛们的,原来这题是卡特兰数,顺便练练java.递归式子:h(0)=1,h(1)=1 h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) ( ...
- POJ 2084 Game of Connections(卡特兰数)
卡特兰数源于组合数学,ACM中比较具体的使用例子有,1括号匹配的种数.2在栈中的自然数出栈的种数.3求多边形内三角形的个数.4,n个数围城圆圈,找不相交线段的个数.5给定n个数,求组成二叉树的种数…… ...
随机推荐
- 09-Flutter移动电商实战-移动商城数据请求实战
1.URL接口管理文件建立 第一步需要在建立一个URL的管理文件,因为课程的接口会一直进行变化,所以单独拿出来会非常方便变化接口.当然工作中的URL管理也是需要这样配置的,以为我们会不断的切换好几个服 ...
- WinDbg常用命令系列---线程相关操作~*
~ (Thread Status) 波浪符(~)命令显示指定线程或当前进程中所有线程的状态. ~ Thread 参数: Thread指定要显示的线程.如果省略此参数,将显示所有线程. 环境: 模式 仅 ...
- telegraf 学习二 几个概念
telegraf 自身包好了自己处理metrics 的数据模型,以及出炉方法 metrics Telegraf指标是用于在处理期间对数据建模的内部表示.这些指标完全基于InfluxDB的数据模型,包含 ...
- zabbix server内存突然飙升
2019年10月16日22:20:58 十点二十突然内存占满,top查询一个httpd进程占了79%,查询httpd.error.log发现 [Wed Oct 16 10:24:57.578643 2 ...
- Java-根据经纬度计算距离(百度地图距离)
最近碰到一个需求,需要根据两个点的经纬度查询两点的距离.感觉以后还会用到,所以小记一波. 第一步:添加Maven依赖. <dependency> <groupId>org.ga ...
- 第12组 Beta冲刺(2/5)
Header 队名:To Be Done 组长博客 作业博客 团队项目进行情况 燃尽图(组内共享) 由于这两天在修严重Bug,故项目没有新的进展,燃尽图没有变化 展示Git当日代码/文档签入记录(组内 ...
- web 视频播放器clappr 相关
https://github.com/tjenkinson/clappr-thumbnails-plugin/ https://github.com/andrefilimono/clappr-flvj ...
- Git创建与合并分支,撤销修改
git回滚到指定版本并推送到远程分支(撤销已提交的修改,并已push) git reset --hard <commit ID号> git push -f git回滚到上一个版本并推送到远 ...
- On-line fusion of trackers for single-object tracking
On-line fusion of trackers for single-object tracking Pattern Recognition, 2018 - Elsevier 2019-08-1 ...
- Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification
Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identificat ...