引言

前面我们介绍了网络一些基本的概念,虽然说这些很难吧,但是至少要做到理解吧。有了之前的基础,我们来正式揭开Netty这神秘的面纱就会简单很多。

服务端

public class PrintServer {

    public void bind(int port) throws Exception {
EventLoopGroup bossGroup = new NioEventLoopGroup(); //1
EventLoopGroup workerGroup = new NioEventLoopGroup(); //2
try {
ServerBootstrap b = new ServerBootstrap(); //3
b.group(bossGroup, workerGroup) //4
.channel(NioServerSocketChannel.class) //5
.option(ChannelOption.SO_BACKLOG, 1024) //6
.childHandler(new ChannelInitializer<SocketChannel>() { //7
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new PrintServerHandler());
}
}); ChannelFuture f = b.bind(port).sync(); //8 f.channel().closeFuture().sync(); //9
} finally {
// 优雅退出,释放线程池资源
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
} /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int port = 8080;
new TimeServer().bind(port);
}
}

我们来分析一下上面的这段代码(下面的每一点对应上面的注释)

1~2:首先我们创建了两个NioEventLoopGroup实例,它是一个由Netty封装好的包含NIO的线程组。为什么创建两个?我想经过前面的学习大家应该都清楚了。对,因为Netty的底层是IO多路复用,bossGroup 是用于接收客户端的连接,原理就是一个实现的Selector的Reactor线程。而workerGroup用于进行SocketChannel的网络读写。

3:创建一个ServerBootstrap对象,可以把它想象成Netty的入口,通过这类来启动Netty,将所需要的参数传递到该类当中,大大降低了的开发难度。

4:将两个NioEventLoopGroup实例绑定到ServerBootstrap对象中。

5:创建Channel(典型的channel有NioSocketChannel,NioServerSocketChannel,OioSocketChannel,OioServerSocketChannel,EpollSocketChannel,EpollServerSocketChannel),这里创建的是NIOserverSocketChannel,它的功能可以理解为当接受到客户端的连接请求的时候,完成TCP三次握手,TCP物理链路建立成功。并将该“通道”与workerGroup线程组的某个线程相关联。

6:设置参数,这里设置的SO_BACKLOG,意思是客户端连接等待队列的长度为1024.

7:建立连接后的具体Handler。就是我们接受数据后的具体操作,例如:记录日志,对信息解码编码等。

8:绑定端口,同步等待成功

9:等待服务端监听端口关闭

绑定该服务端的Handler

public class PrintServerHandler extends ChannelHandlerAdapter {

    @Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
ByteBuf buf = (ByteBuf) msg; //1
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req); //将缓存区的字节数组复制到新建的req数组中
String body = new String(req, "UTF-8");
System.out.println(body);
String response= "打印成功";
ByteBuf resp = Unpooled.copiedBuffer(response.getBytes());
ctx.write(resp); //2
} @Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
ctx.flush(); //3
} @Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
ctx.close();
}
}

PrintServerHandler 继承 ChannelHandlerAdapter ,在这里它的功能为 打印客户端发来的数据并且返回客户端打印成功。

我们只需要实现channelRead,exceptionCaught,前一个为接受消息具体逻辑的实现,后一个为发生异常后的具体逻辑实现。

1:我们可以看到,接受的消息被封装为了Object ,我们将其转换为ByteBuf ,前一章的讲解中也说明了该类的作用。我们需要读取的数据就在该缓存类中。

2~3:我们将写好的数据封装到ByteBuf中,然后通过write方法写回到客户端,这里的3调用flush方法的作用为,防止频繁的发送数据,write方法并不直接将数据写入SocketChannel中,而是把待发送的数据放到发送缓存数组中,再调用flush方法发送数据。

客户端

public class PrintClient {

    public void connect(int port, String host) throws Exception {
EventLoopGroup group = new NioEventLoopGroup(); //1
try {
Bootstrap b = new Bootstrap(); //2
b.group(group) //3
.channel(NioSocketChannel.class) //4
.option(ChannelOption.TCP_NODELAY, true) //5
.handler(new ChannelInitializer<SocketChannel>() { //6
@Override
public void initChannel(SocketChannel ch)
throws Exception {
ch.pipeline().addLast(new PrintClientHandler());
}
}); ChannelFuture f = b.connect(host, port).sync(); //7
f.channel().closeFuture().sync(); //8
} finally {
// 优雅退出,释放NIO线程组
group.shutdownGracefully();
}
} /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int port = 8080;
new TimeClient().connect(port, "127.0.0.1");
}
}

我们继续来分析一下上面的这段代码(下面的每一点对应上面的注释)

1:区别于服务端,我们在客户端只创建了一个NioEventLoopGroup实例,因为客户端你并不需要使用I/O多路复用模型,需要有一个Reactor来接受请求。只需要单纯的读写数据即可

2:区别于服务端,我们在客户端只需要创建一个Bootstrap对象,它是客户端辅助启动类,功能类似于ServerBootstrap。

3:将NioEventLoopGroup实例绑定到Bootstrap对象中。

4:创建Channel(典型的channel有NioSocketChannel,NioServerSocketChannel,OioSocketChannel,OioServerSocketChannel,EpollSocketChannel,EpollServerSocketChannel),区别与服务端,这里创建的是NIOSocketChannel.

5:设置参数,这里设置的TCP_NODELAY为true,意思是关闭延迟发送,一有消息就立即发送,默认为false。

6:建立连接后的具体Handler。注意这里区别与服务端,使用的是handler()而不是childHandler()。handler和childHandler的区别在于,handler是接受或发送之前的执行器;childHandler为建立连接之后的执行器。

7:发起异步连接操作

8:当代客户端链路关闭

绑定该客户端的Handler

public class PrintClientHandler extends ChannelHandlerAdapter {

    private static final Logger logger = Logger
.getLogger(TimeClientHandler.class.getName()); private final ByteBuf firstMessage; /**
* Creates a client-side handler.
*/
public TimeClientHandler() {
byte[] req = "你好服务端".getBytes();
firstMessage = Unpooled.buffer(req.length); //1
firstMessage.writeBytes(req); } @Override
public void channelActive(ChannelHandlerContext ctx) {
ctx.writeAndFlush(firstMessage); //2
} @Override
public void channelRead(ChannelHandlerContext ctx, Object msg) //3
throws Exception {
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req);
String body = new String(req, "UTF-8");
System.out.println("服务端回应消息 : " + body);
} @Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { //4
// 释放资源
System.out.println("Unexpected exception from downstream : "
+ cause.getMessage());
ctx.close();
}
}

PrintClientHandler 继承 ChannelHandlerAdapter ,在这里它的功能为 发送数据并打印服务端发来的数据。

我们只需要实现channelActive,channelRead,exceptionCaught,第一个为建立连接后立即执行,后两个与一个为接受消息具体逻辑的实现,另一个为发生异常后的具体逻辑实现。

1:将发送的信息封装到ByteBuf中。

2:发送消息。

3:接受客户端的消息并打印

4:发生异常时,打印异常信息,释放客户端资源

总结

这是一个入门程序,对应前面所讲的I/O多路复用模型以及NIO的特性,能很有效的理解该模式的编程方式。如果这几段代码看着很费劲,那么可以看看之前博主的Netty基础系列。

如果博主哪里说得有问题,希望大家提出来,一起进步~

Netty入门系列(1) --使用Netty搭建服务端和客户端的更多相关文章

  1. Netty入门系列(2) --使用Netty解决粘包和拆包问题

    前言 上一篇我们介绍了如果使用Netty来开发一个简单的服务端和客户端,接下来我们来讨论如何使用解码器来解决TCP的粘包和拆包问题 TCP为什么会粘包/拆包 我们知道,TCP是以一种流的方式来进行网络 ...

  2. Netty入门系列(3) --使用Netty进行编解码的操作

    前言 何为编解码,通俗的来说,我们需要将一串文本信息从A发送到B并且将这段文本进行加工处理,如:A将信息文本信息编码为2进制信息进行传输.B接受到的消息是一串2进制信息,需要将其解码为文本信息才能正常 ...

  3. SuperSocket与Netty之实现protobuf协议,包括服务端和客户端

    今天准备给大家介绍一个c#服务器框架(SuperSocket)和一个c#客户端框架(SuperSocket.ClientEngine).这两个框架的作者是园区里面的江大渔. 首先感谢他的无私开源贡献. ...

  4. webservice - 使用JAX-WS注解的方式快速搭建服务端和客户端

    1.Define the interface import javax.jws.WebMethod; import javax.jws.WebParam; import javax.jws.WebRe ...

  5. vue 快速入门 系列 —— 使用 vue-cli 3 搭建一个项目(上)

    其他章节请看: vue 快速入门 系列 使用 vue-cli 3 搭建一个项目(上) 前面我们已经学习了一个成熟的脚手架(vue-cli),笔者希望通过这个脚手架快速搭建系统(或项目).而展开搭建最好 ...

  6. vue 快速入门 系列 —— 使用 vue-cli 3 搭建一个项目(下)

    其他章节请看: vue 快速入门 系列 使用 vue-cli 3 搭建一个项目(下) 上篇 我们已经成功引入 element-ui.axios.mock.iconfont.nprogress,本篇继续 ...

  7. Netty学习笔记(二) 实现服务端和客户端

    在Netty学习笔记(一) 实现DISCARD服务中,我们使用Netty和Python实现了简单的丢弃DISCARD服务,这篇,我们使用Netty实现服务端和客户端交互的需求. 前置工作 开发环境 J ...

  8. Netty 学习(一):服务端启动 & 客户端启动

    Netty 学习(一):服务端启动 & 客户端启动 作者: Grey 原文地址: 博客园:Netty 学习(一):服务端启动 & 客户端启动 CSDN:Netty 学习(一):服务端启 ...

  9. Netty 学习(二):服务端与客户端通信

    Netty 学习(二):服务端与客户端通信 作者: Grey 原文地址: 博客园:Netty 学习(二):服务端与客户端通信 CSDN:Netty 学习(二):服务端与客户端通信 说明 Netty 中 ...

随机推荐

  1. python中列表(list)函数及使用

    序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推. Python有6个序列的内置类型,但最常见的是列表和元组. 序列 ...

  2. python基础语法18 类的内置方法(魔法方法),单例模式

    类的内置方法(魔法方法): 凡是在类内部定义,以__开头__结尾的方法,都是类的内置方法,也称之为魔法方法. 类的内置方法,会在某种条件满足下自动触发. 内置方法如下: __new__: 在__ini ...

  3. 简要说明盒子模型和flex布局

    盒子模型:可以看做是一个盒子,包括外边距.边框.内边距.实际内容. flex布局:弹性布局,灵活性好. 当给元素设置display:flex时,它就是flex容器,它的所有子元素自动成为容器成员,称为 ...

  4. PATA1025PAT Ranking

    需要注意的就是sort函数的应用,还有自己比较函数cmp的编写 在一个就是结构体的设计,排序时的考室内的排序,数组下标的处理 参考代码: #define _CRT_SECURE_NO_WARNINGS ...

  5. wpf radiobuttong 去前面的圆点, 自定义radiobutton样式

    自定义radiobutton样式代码: <windows.Resources> <LinearGradientBrush x:Key="CheckRadioFillNorm ...

  6. R 语言解压目录下的所有gz文件

    setwd("GSE29431_RAW") # 进入目录 fileNames <- list.files() # 获取目录下的所有文件 sapply(fileNames, g ...

  7. 如何排查 Linux 机器是否已经被入侵?

    原文: https://mp.weixin.qq.com/s/XP0eD40zpwajdv11bsbKkw http://www.cnblogs.com/stonehe/p/7562374.html ...

  8. Redis哨兵、复制、集群的设计原理与区别

    一 前言 谈到Redis服务器的高可用,如何保证备份的机器是原始服务器的完整备份呢?这时候就需要哨兵和复制. 哨兵(Sentinel):可以管理多个Redis服务器,它提供了监控,提醒以及自动的故障转 ...

  9. Bash cat EOF

    cat <<EOF > ciphers.txt> ECDHE-ECDSA-AES128-GCM-SHA256> ECDHE-RSA-AES128-GCM-SHA256&g ...

  10. Java 签名验签工具类

    public class SignatureUtil { private static final String CHARSET = "UTF-8"; private static ...