HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K


【Problem Description】

【Solution】

对于一个指数\(k\),找到一个最大的\(m\)使得\(m^k\le n\),则\(k\)这个指数对答案的贡献为\(m\),因为对于\(i\in[1,m]\)中的数\(i^k\)一定小于等于\(n\)。而\(m=n^{\frac{1}{k}}\)。由唯一分解定理可知,\(k\)一定能表示为一些素数的乘积。所以只需要考虑\(64\)以内的素数即可。但是会出现重复的值,例如\(8^2=4^3=2^{2\times 3}\),所以需要用容斥去重即可。


【Code】

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 65
int prime[maxn],cnt=0;
bool vis[maxn]={1,1};
void Euler(){ //欧拉筛素数
for(int i=2;i<maxn;i++){
if(!vis[i]) prime[++cnt]=i;
for(int j=1;j<=cnt&&i*prime[j]<maxn;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
int n,ans=0;
int fpow(int a,int b){ //快速幂
int ans=1;
while(b){
if(b&1) ans*=a;
a*=a;
b>>=1;
}
return ans;
}
void dfs(int pos,int num,int val){ //容斥
if(val>64) return ; //最大值不超过64
int tmp=pow(n,1.0/val)+0.1; //求最大的m
if(fpow(tmp,val)>n) tmp--;tmp--; //精度判断
if(num) if(num&1) ans+=tmp;
else ans-=tmp;
for(int i=pos+1;i<=cnt;i++){
dfs(i,num+1,val*prime[i]);
}
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);Euler();
while(cin>>n){
ans=1;//1一定满足条件
dfs(0,0,1);
cout<<ans<<endl;
}
return 0;
}

HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K的更多相关文章

  1. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  2. hdu 2204 Eddy's爱好 容斥原理

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  3. HDU 2204 Eddy's 爱好 (容斥原理)

    <题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...

  4. HDU 2204 Eddy's爱好(容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...

  5. HDU 2204 Eddy's爱好(容斥原理dfs写法)题解

    题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数. 思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 ...

  6. hdu 2204 Eddy's爱好

    // 一个整数N,1<=N<=1000000000000000000(10^18).// 输出在在1到N之间形式如M^K的数的总数// 容斥原理// 枚举k=集合{2,3,5,7,11,1 ...

  7. HDU - 4336:Card Collector(min-max容斥求期望)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  8. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  9. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

随机推荐

  1. 安裝TA-Lib到想要罵髒話

    收集下載股票交易指數的歷史數據,並計算主要的幾個指標來進行技術分析. 查找網上的資料,發現大家都在用TA-Lib來計算指標,於是在下載並匯入了數據後開始安裝這個庫. pip install TA-Li ...

  2. [LeetCode] 305. Number of Islands II 岛屿的数量 II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  3. java打包小记

    1.一个类的 Hello.java class Hello{ public static void main(String[] agrs){ System.out.println("hell ...

  4. Electron-Vue使用element-ui el-table不显示/卡死

    我们需要把element-ui加入到.electron-vue/webpack.renderer.config.js文件中的白名单里面 在这句话let whiteListedModules = ['v ...

  5. mysql 按照计算值排序

    SELECT title,browse_num/exposure_num as click_rate FROM `tf_news` ORDER BY browse_num/exposure_num d ...

  6. Java字符串无意识的递归

    Java中的每个类基本上都继承自Object,标准容器类自然也不例外.因此容器类都有toString()方法,并且重写了该方法,使得它生成的String结果能够表达容器本身,以及容器所包含的对象.例如 ...

  7. VueJS中学习使用Vuex详解

    转载自:https://segmentfault.com/a/1190000015782272,做了部分修改(这里建议不要用所谓的getters,一来多次一举,二来模块化时会产生很不协调的用法) 在S ...

  8. js光标定位操作

    1. 自动选中区域内容 <html> <meta http-equiv="Content-Type" content="text/html; chars ...

  9. golang程序因未知错误崩溃时如何记录异常

    开发服务器程序时如果未经过充分测试, 服务稳定运行一段时间后会突然崩溃退出.一般是因为程序中出现了某个未捕获的异常. 这类问题属于偶现的,且需要服务器运行一段时间之后才会出现,难以定位有问题的代码段. ...

  10. hyper-v安装windows7

    win7镜像下载地址 http://msdn.itellyou.cn/ 该网站都是微软系列的正规软件 非常好用 在hyper-v 虚拟机安装windows系统时,到百度搜索了几个iso 都不好用 到h ...