转摘:https://segmentfault.com/a/1190000015440560

一、数据初探

首先导入要使用的科学计算包numpy,pandas,可视化matplotlib,seaborn,以及机器学习包

 import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib as mpl import matplotlib.pyplot as plt
from IPython.display import display
plt.style.use("fivethirtyeight")
sns.set_style({'font.sans-serif':['simhei','Arial']})
%matplotlib inline # 检查Python版本
from sys import version_info
if version_info.major != 3:
raise Exception('请使用Python 3 来完成此项目')

引入模块与包

然后导入数据,并进行初步的观察,这些观察包括了解数据特征的缺失值异常值,以及大概的描述性统计

 # 导入二手房数据
lianjia_df = pd.read_csv('lianjia.csv')
display(lianjia_df.head(n=2))

读取CSV数据

初步观察到一共有11个特征变量,Price 在这里是我们的目标变量,然后我们继续深入观察一下。

 # 检查缺失值情况
lianjia_df.info()

检查缺失值情况

发现了数据集一共有23677条数据,其中Elevator特征有明显的缺失值。

lianjia_df.describe()

数据初始描述信息

上面结果给出了特征值是数值的一些统计值,包括平均数标准差中位数最小值最大值25%分位数75%分位数。这些统计结果简单直接,对于初始了解一个特征好坏非常有用,比如我们观察到 Size 特征 的最大值为1019平米,最小值为2平米,那么我们就要思考这个在实际中是不是存在的,如果不存在没有意义,那么这个数据就是一个异常值,会严重影响模型的性能。

 # 添加新特征房屋均价
df = lianjia_df.copy()
df['PerPrice'] = lianjia_df['Price']/lianjia_df['Size'] # 重新摆放列位置
columns = ['Region', 'District', 'Garden', 'Layout', 'Floor', 'Year', 'Size', 'Elevator', 'Direction', 'Renovation', 'PerPrice', 'Price']
df = pd.DataFrame(df, columns = columns) # 重新审视数据集
display(df.head(n=2))

添加新特征房屋均价

发现 Id 特征其实没有什么实际意义,所以将其移除。由于房屋单价分析起来比较方便,简单的使用总价/面积就可得到,所以增加一个新的特征 PerPrice(只用于分析,不是预测特征)。另外,特征的顺序也被调整了一下,看起

来比较舒服。

二、可视化分析

Region特征分析:对于区域特征,我们可以分析不同区域房价和数量的对比。

 # 对二手房区域分组对比二手房数量和每平米房价
df_house_count = df.groupby('Region')['Price'].count().sort_values(ascending=False).to_frame().reset_index()
df_house_mean = df.groupby('Region')['PerPrice'].mean().sort_values(ascending=False).to_frame().reset_index() f, [ax1,ax2,ax3] = plt.subplots(3,1,figsize=(20,15))
sns.barplot(x='Region', y='PerPrice', palette="Blues_d", data=df_house_mean, ax=ax1)
ax1.set_title('北京各大区二手房每平米单价对比',fontsize=15)
ax1.set_xlabel('区域')
ax1.set_ylabel('每平米单价') sns.barplot(x='Region', y='Price', palette="Greens_d", data=df_house_count, ax=ax2)
ax2.set_title('北京各大区二手房数量对比',fontsize=15)
ax2.set_xlabel('区域')
ax2.set_ylabel('数量') sns.boxplot(x='Region', y='Price', data=df, ax=ax3)
ax3.set_title('北京各大区二手房房屋总价',fontsize=15)
ax3.set_xlabel('区域')
ax3.set_ylabel('房屋总价') plt.show()

区域特征

使用了pandas的网络透视功能 groupby 分组排序。区域特征可视化直接采用 seaborn 完成,颜色使用调色板 palette 参数,颜色渐变,越浅说明越少,反之越多。
可以观察到:

    • 二手房均价:西城区的房价最贵均价大约11万/平,因为西城在二环以里,且是热门学区房的聚集地。其次是东城大约10万/平,然后是海淀大约8.5万/平,其它均低于8万/平。
    • 二手房房数量:从数量统计上来看,目前二手房市场上比较火热的区域。海淀区和朝阳区二手房数量最多,差不多都接近3000套,毕竟大区,需求量也大。然后是丰台区,近几年正在改造建设,有赶超之势。
    • 二手房总价:通过箱型图看到,各大区域房屋总价中位数都都在1000万以下,且房屋总价离散值较高,西城最高达到了6000万,说明房屋价格特征不是理想的正太分布。

Size特征分析 :

 f, [ax1,ax2] = plt.subplots(1, 2, figsize=(15, 5))
# 建房面积的分布情况
sns.distplot(df['Size'], bins=20, ax=ax1, color='r')
sns.kdeplot(df['Size'], shade=True, ax=ax1)
# 建房面积和出售价格的关系
sns.regplot(x='Size', y='Price', data=df, ax=ax2)
plt.show()

面积特征分析

Size 分布

通过 distplot kdeplot 绘制柱状图观察 Size 特征的分布情况,属于长尾类型的分布,这说明了有很多面积很大且超出正常范围的二手房。

Size 与 Price 的关系

通过 regplot 绘制了 Size 和 Price 之间的散点图,发现 Size 特征基本与Price呈现线性关系,符合基本常识,面积越大,价格越高。但是有两组明显的异常点:1. 面积不到10平米,但是价格超出10000万;2. 一个点面积超过了1000平米,价格很低,需要查看是什么情况。

 df.loc[df['Size']< 10]

过滤面积小于10

df.loc[df['Size']>1000]

过滤面积大于1000

经观察这个异常点不是普通的民用二手房,很可能是商用房,所以才有1房间0厅确有如此大超过1000平米的面积,这里选择移除。

df = df[(df['Layout']!='叠拼别墅')&(df['Size']<1000)]

过滤数据

重新进行可视化发现就没有明显的异常点了

 Layout特征分析:

f, ax1= plt.subplots(figsize=(20,20))
sns.countplot(y='Layout', data=df, ax=ax1)
ax1.set_title('房屋户型',fontsize=15)
ax1.set_xlabel('数量')
ax1.set_ylabel('户型')
plt.show()

房型物征

这个特征真是不看不知道,各种厅室组合搭配,竟然还有9室3厅,4室0厅等奇怪的结构。其中,2室一厅占绝大部分,其次是3室一厅,2室2厅,3室两厅。但是仔细观察特征分类下有很多不规则的命名,比如2室一厅与2房间1卫,还有别墅,没有统一的叫法。这样的特征肯定是不能作为机器学习模型的数据输入的,需要使用特征工程进行相应的处理。

Renovation 特征分析

 df['Renovation'].value_counts()

装修特征

精装 11345

简装 8497

其他 3239

毛坯 576

发现Renovation装修特征中竟然有南北,它属于朝向的类型,可能是因为爬虫过程中一些信息位置为空,导致“Direction”朝向特征出现在这里,所以需要清除或替

# 去掉错误数据“南北”,因为爬虫过程中一些信息位置为空,导致“Direction”的特征出现在这里,需要清除或替换
df['Renovation'] = df.loc[(df['Renovation'] != '南北'), 'Renovation'] # 画幅设置
f, [ax1,ax2,ax3] = plt.subplots(1, 3, figsize=(20, 5))
sns.countplot(df['Renovation'], ax=ax1)
sns.barplot(x='Renovation', y='Price', data=df, ax=ax2)
sns.boxplot(x='Renovation', y='Price', data=df, ax=ax3)
plt.show()

按装修分类统计图

观察到,精装修的二手房数量最多,简装其次,也是我们平日常见的。而对于价格来说,毛坯类型却是最高,其次是精装修

Elevator 特征分析

初探数据的时候,我们发现 Elevator 特征是有大量缺失值的,这对于我们是十分不利的,首先我们先看看有多少缺失值:

misn = len(df.loc[(df['Elevator'].isnull()), 'Elevator'])
print('Elevator缺失值数量为:'+ str(misn))

电梯特征分析

Elevator 缺失值数量为:8237

这么多的缺失值怎么办呢?这个需要根据实际情况考虑,常用的方法有平均值/中位数填补法,直接移除,或者根据其他特征建模预测等。

这里我们考虑填补法,但是有无电梯不是数值,不存在平均值和中位数,怎么填补呢?这里给大家提供一种思路:就是根据楼层 Floor 来判断有无电梯,一般的楼层大于6的都有电梯,而小于等于6层的一般都没有电梯。有了这个标准,那么剩下的就简单了。

 # 由于存在个别类型错误,如简装和精装,特征值错位,故需要移除
df['Elevator'] = df.loc[(df['Elevator'] == '有电梯')|(df['Elevator'] == '无电梯'), 'Elevator'] # 填补Elevator缺失值
df.loc[(df['Floor']>6)&(df['Elevator'].isnull()), 'Elevator'] = '有电梯'
df.loc[(df['Floor']<=6)&(df['Elevator'].isnull()), 'Elevator'] = '无电梯' f, [ax1,ax2] = plt.subplots(1, 2, figsize=(20, 10))
sns.countplot(df['Elevator'], ax=ax1)
ax1.set_title('有无电梯数量对比',fontsize=15)
ax1.set_xlabel('是否有电梯')
ax1.set_ylabel('数量')
sns.barplot(x='Elevator', y='Price', data=df, ax=ax2)
ax2.set_title('有无电梯房价对比',fontsize=15)
ax2.set_xlabel('是否有电梯')
ax2.set_ylabel('总价')
plt.show()

画统计图

结果观察到,有电梯的二手房数量居多一些,毕竟高层土地利用率比较高,适合北京庞大的人群需要,而高层就需要电梯。相应的,有电梯二手房房价较高,因为电梯前期装修费和后期维护费包含内了(但这个价格比较只是一个平均的概念,比如无电梯的6层豪华小区当然价格更高了)。

Year 特征分析:

 grid = sns.FacetGrid(df, row='Elevator', col='Renovation', palette='seismic',size=4)
grid.map(plt.scatter, 'Year', 'Price')
grid.add_legend()

画散点图

在Renovation和Elevator的分类条件下,使用 FaceGrid 分析 Year 特征,观察结果如下:

  • 整个二手房房价趋势是随着时间增长而增长的;
  • 2000年以后建造的二手房房价相较于2000年以前有很明显的价格上涨;
  • 1980年之前几乎不存在有电梯二手房数据,说明1980年之前还没有大面积安装电梯;
  • 1980年之前无电梯二手房中,简装二手房占绝大多数,精装反而很少;

Floor 特征分析:

f, ax1= plt.subplots(figsize=(20,5))
sns.countplot(x='Floor', data=df, ax=ax1)
ax1.set_title('房屋户型',fontsize=15)
ax1.set_xlabel('数量')
ax1.set_ylabel('户型')
plt.show()

楼层特征统计图

可以看到,6层二手房数量最多,但是单独的楼层特征没有什么意义,因为每个小区住房的总楼层数都不一样,我们需要知道楼层的相对意义。另外,楼层与文化也有很重要联系,比如中国文化七上八下,七层可能受欢迎,房价也贵,而一般也不会有4层或18层。当然,正常情况下中间楼层是比较受欢迎的,价格也高,底层和顶层受欢迎度较低,价格也相对较低。所以楼层是一个非常复杂的特征,对房价影响也比较大。

Python数据分析学习(一)的更多相关文章

  1. Python数据分析学习目录

    python数据分析学习目录 Anaconda的安装和更新 矩阵NumPy pandas数据表 matplotlib-2D绘图库学习目录                      

  2. Python数据分析学习-re正则表达式模块

    正则表达式 为高级的文本模式匹配.抽取.与/或文本形式的搜索和替换功能提供了基础.简单地说,正则表达式(简称为 regex)是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符,于 ...

  3. Python数据分析学习(二):Numpy数组对象基础

    1.1数组对象基础 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  4. python数据分析学习(2)pandas二维工具DataFrame讲解

    目录 二:pandas数据结构介绍   下面继续讲解pandas的第二个工具DataFrame. 二:pandas数据结构介绍 2.DataFarme   DataFarme表示的是矩阵的数据表,包含 ...

  5. python数据分析学习(1)pandas一维工具Series讲解

    目录 一:pandas数据结构介绍   python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 ...

  6. Python数据分析学习(一):Numpy与纯Python计算向量加法速度比较

    import sys from datetime import datetime import numpy as np def numpysum(n): a = np.arange(n) ** 2 b ...

  7. Python数据分析学习之Numpy

    Numpy的简单操作 import numpy #导入numpy包 file = numpy.genfromtxt("文件路径",delimiter=" ",d ...

  8. Python数据分析学习(二)

    转摘:https://segmentfault.com/a/1190000015613967 本篇将继续上一篇数据分析之后进行数据挖掘建模预测,这两部分构成了一个简单的完整项目.结合两篇文章通过数据分 ...

  9. 关于python数据序列化的那些坑

    -----世界上本来没那么多坑,python更新到3以后坑就多了 无论哪一门语言开发,都离不了数据储存与解析,除了跨平台性极好的xml和json之外,python要提到的还有自身最常用pickle模块 ...

随机推荐

  1. mysql编译安装下载地址(官网)

    https://dev.mysql.com/get/Downloads/MySQL-version number/mysql-version number.tar.gz 把这个地址上面的版本号改成自己 ...

  2. Android P(9.0) userdebug版本执行adb remount失败

    [DESCRIPTION]      在android P版本上如果按照“FAQ18076 android 6.0 M userdebug版本执行adb remount失败”的做法在userdebug ...

  3. “GIS DICTIONARY A-Z” 查询页面开发(3)—— 基础知识之服务器、IP地址、域名、DNS、端口以及Web程序的访问流程

    今天补一补基础知识: 一.服务器:能够提供服务的机器,取决于机器上安装的软件(服务软件).服务器响应服务请求,并进行处理. Web服务器:提供Web服务,即网站访问.常见Web服务软件:Apache( ...

  4. Linux 常用命令(根据自己的理解随时更新)

    1. linux 目录解释系统启动必须: /boot:存放的启动 Linux 时使用的内核文件,包括连接文件以及镜像文件. /etc:存放所有的系统需要的配置文件和子目录列表,更改目录下的文件可能会导 ...

  5. 【前端_js】array.forEach和$.each()及$().each()的用法与区别

    1.$.each():方法是jQuery中的方法,用于遍历数组或对象.用法:$.each(array,function(index,value){...}),有两个参数,第一个为待遍历的数组或对象,第 ...

  6. 基于TCP协议的大文件传输(粘包问题处理)

    基于TCP的大文件上传服务端实现 # 服务端 # -*- coding: utf-8 -*- from socket import * import json, struct server = soc ...

  7. 利用Metasploit攻击Android

    首先我在Kali下生成一个Android的应用程序,即apk格式的文件,用到的命令是: msfvenom -p android/meterpreter/reverse_tcp LHOST=本地ip L ...

  8. 【转】大众点评Cat--架构分析

    https://blog.csdn.net/szwandcj/article/details/51025669 Cat功能强大且多,光日志的报表和图表分析就有十几种,但文档却很少,寥寥无几找到一些粒度 ...

  9. discuz添加标签聚合页

    discuz使用视频教程前段时间把discuz原本的标签聚合页修改了一下,原本的标签聚合页只显示100条最新的标签,把它修改成了所有标签都显示,并加上分页. 修改方法: 1.修改/source/mod ...

  10. table的各种用法

    使用 colgroup 和 col 实现响应式表格(table的各种用法):http://coderlt.coding.me/2017/11/20/table-colgroup/