前言

简介

在使用神经网络解决Gaze Estimation的问题上,Appearance-Based Gaze Estimation in the Wild是非常基础的一篇论文。本篇博客主要尝试简单介绍论文使用的主要方法,并大致总结论文作者所得出的结论。

论文概述

本篇论文主要分为三个方面:

  1. 介绍了论文作者收集制作的MPIIGaze数据集。
  2. 介绍了一种使用了CNN作为主要方法的Gaze Estimation方法。
  3. 在多个数据集上使用多种方法进行分析比较,以得到更多对于Gaze Estimation的新理解。

论文主要内容

MPIIGaze数据集

论文作者在文中提到,大部分(截至论文撰写时的)主流Gaze Estimating方法往往基于实验室中受控的环境下采集的数据集,而这类数据集的眼部外表往往变化较少,光照情况、大部分有用像素的集中位置等特征也较为单一。因此,论文作者采集制作了MPIIGaze数据集,历时数月通过笔记本电脑对15个受试者进行采集,数据集主要具有以下特点:

  • 全部在笔记本电脑的真实使用环境下采集,光照,眼部外表等特征相比其他数据集有显著的多样性。
  • 由于不同受试者采集的摄像机位置不同,数据集中头部姿态,视线方向的覆盖范围较广且重复率较低。

论文作者认为,MPIIGaze数据集具有更高的复杂度,更加接近与日常生活中的各类场景。后文的研究也证明MPIIGaze数据集训练的模型确实在鲁棒性上有所提升。

引入CNN的新Gaze Estimation方法

在介绍完MPIIGaze数据集后,论文作者介绍了一种新的使用神经网络解决Gaze Estimation问题的方法。

文中提到,当时的各类方法往往将精确的人物头部姿态作为已知条件,是一种很强的假设。因此,论文作者提出了一套完整的方法,根据输入图像完整判断人物头部姿态、视线方向。

算法的流程图如下:(图片来源自论文)

算法将单目相机拍摄的照片作为输入,直接输出最终的视线方向。该算法主要分为以下三个部分:

  • 人脸对齐与3D头部姿态判断
  • 归一化
  • 使用CNN进行视线检测

人脸对齐与3D头部姿态判断

第一部分中,输入为单目相机拍摄的人物图像。论文作者采用SURF cascade方法检测人脸,检测到人脸后采用constrained local mode framework定位人脸标记点,即双眼的左右边界点与人物嘴巴的左边边界点共6个点。

论文作者根据收集到的所有人脸数据,建立人脸的基础3D模型,并将人脸基础3D模型与识别出的6个人脸标记点对比,通过EPNP算法估计出人脸的3D旋转\(r\),并将双眼标记点的中点,作为双眼的位置\(t\)。

至此,得到了人脸的3D旋转估计与双眼位置,进入下一步处理。

归一化

接下来,论文作者进行一系列操作将人脸图像归一化,以提高CNN的最终准确率。

首先,论文作者分别建立人脸坐标系与摄像机坐标系,具体规则可参考Gaze Estimation笔记——data normalization。归一化主要通过透视变换,达到以下目标:

  • 将摄像机视角从固定距离\(d\)正对双眼位置\(t\);
  • 将人脸坐标与摄像机坐标的\(x\)轴平行。

归一化后的到分辨率固定的眼部图像\(e\)与2维的头部转动角度向量\(h\)。这样的归一化将跨数据集测试变为可行。

使用CNN进行视线检测

CNN的任务为处理输入的2D头部角度\(h\)、归一化后的眼部图像\(e\),以得到最终的2维视线角度向量\(g\)。

论文作者采用的CNN构架是LeNet,在全连接层后训练了线性回归层以输出视线角度向量\(g\)。CNN将固定分辨率60x36的图片作为输入,两个卷积核分别为5x5x20、5x5x50。全连接层的隐藏单元共500个,并将头部角度\(h\)拼接至全连接层的输出,以得到最终的2维视线角度向量\(g\)。

论文作者进行的实验及结果

跨数据集测试

在跨数据集测试中,论文作者将头部、眼部角度覆盖最广的UT Multiview数据集作为训练集,分别测试了模型在MPIIGaze数据集与eyediap数据集上的结果,并与其余5种当时的表现顶尖的算法进行比较。

在两个测试数据集中,论文作者提出的基于CNN的方法表现均优于其他算法。并且各算法在MPIIGaze数据集上的准确率均低于eyediap数据集,证明了室外复杂环境下Gaze Estimation的难度提升

此外,论文作者认为这一结果暴露了UT Multiview数据集在眼部外观上较为单一的缺陷,并推断出数据集多样性的缺乏是限制Gaze Estimation效果的因素之一

数据集内测试

在单个数据集的测试中,论文作者提出的算法同样有最高的准确率。

此外,论文作者还将同样模型分别在UT Multiview数据集、MPIIGaze数据集下进行训练后,测试其在光照环境变化时的准确率,发现在MPIIGaze数据集下训练的模型明显对于光照变化有更强的适应能力,证明了数据集多样性对于室外Gaze Estimation的重要性

算法的效果验证

论文作者还测试了不同CNN架构在UT Multiview数据集以及MPIIGaze数据集下的结果,证明提出的CNN架构优于当时的其他种类CNN。

同时,论文作者还进行了对不同识别对象进行单独训练的“person-specific”方法,发现在能针对不同对象进行单独训练的情况下,各类算法均有算法上的提升

笔者的遗留问题

  • 对于归一化使用EPNP算法得到3D头部旋转角度时的具体操作,即选定哪些点作为参考点、控制点还不清楚,论文中没有详细阐述,需要后期学习代码时留意。
  • 归一化后头部坐标系与相机坐标系X轴对齐的情况下,按笔者理解应该只有头部上下转动一个角度,而\(h\)是二维向量,具体是哪两个角度也需要进一步学习。

Gaze Estimation学习笔记(1)-Appearance-Based Gaze Estimation in the Wild的更多相关文章

  1. Gaze Estimation学习笔记(2)-It's Written All Over Your Face Full-Face Appearance-Based Gaze Estimation

    目录 前言 将完整脸部图像作为输入的空间权重CNN方法 将full-face image作为输入的原因 加入空间权重的CNN方法 基础CNN结构 空间权重机制 实验及分析 头部姿态.面部表现视线方向的 ...

  2. SQLServer学习笔记系列1

    一.前言 一直自己没有学习做笔记的习惯,所以为了加强自己对知识的深入理解,决定将学习笔记写下来,希望向各位大牛们学习交流! 不当之处请斧正!在此感谢!这边就先从学习Sqlserver写起,自己本身对数 ...

  3. X-Cart 学习笔记(二)X-Cart框架1

    目录 X-Cart 学习笔记(一)了解和安装X-Cart X-Cart 学习笔记(二)X-Cart框架1 X-Cart 学习笔记(三)X-Cart框架2 X-Cart 学习笔记(四)常见操作 四.X- ...

  4. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. [原创]java WEB学习笔记72:Struts2 学习之路-- 文件的上传下载,及上传下载相关问题

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  6. CUBRID学习笔记 47 show

    cubrid的中sql查询语法show c#,net,cubrid,教程,学习,笔记欢迎转载 ,转载时请保留作者信息.本文版权归本人所有,如有任何问题,请与我联系wang2650@sohu.com . ...

  7. <老友记>学习笔记

    这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的 ...

  8. GC学习笔记

    GC学习笔记 这是我公司同事的GC学习笔记,写得蛮详细的,由浅入深,循序渐进,让人一看就懂,特转到这里. 一.GC特性以及各种GC的选择 1.垃圾回收器的特性 2.对垃圾回收器的选择 2.1 连续 V ...

  9. 非常详细GC学习笔记

    转载:http://blog.csdn.net/fenglibing/article/details/6321453 这是我公司同事的GC学习笔记,写得蛮详细的,由浅入深,循序渐进,让人一看就懂,特转 ...

随机推荐

  1. MongoDB常用数据库命令第二集

    =======================基础命令======================= mongo 进入数据库操作界面db 查看当前使用的数据库show dbs 查看当前已经被创建出来的 ...

  2. Django:RestFramework之-------序列化器

    8.序列化 功能: 对请求数据进行验证 对Queryset进行序列化 8.1一个简单序列化: import json from api import models from rest_framewor ...

  3. 小tips:在JS语句执行机制涉及的一种基础类型Completion

    看一个如下的例子.在函数 foo 中,使用了一组 try 语句.在 try 中有 return 语句,finally 中的内容还会执行吗? function foo(){ try{ return 0; ...

  4. android中listview滑动卡顿的原因

    导致Android界面滑动卡顿主要有两个原因: 1.UI线程(main)有耗时操作 2.视图渲染时间过长,导致卡顿 http://www.tuicool.com/articles/fm2IFfU 

  5. 基于 Vue + Element 的响应式后台模板

    项目地址 https://github.com/caochangkui/vue-element-responsive-demo 主要功能 响应式侧边栏 面包屑导航(结合router.js) 路由动效 ...

  6. Django 之 rest_framework 分页器使用

    Django rest_framework 之分页器使用以及其源码分析 三种分页方式: 常规分页 -->PageNumberPagination 偏移分页 -->LimitOffsetPa ...

  7. Unity 渲染教程(五):多个光源

    https://www.jianshu.com/p/c1a9a5d27765 对每个物体渲染多个光源的光照效果. 支持不同的光源类型. 使用光源cookie. 计算顶点光照. 在光照计算中添加球面谐波 ...

  8. Discuz!基础的代码安全和代码规范

    变量所有漏洞都来源于变量,因此变量首先要做的就是定义初始化.用任何一个变量前一定要先定义,初始化它虽然现在Discuz!X来说,GPC不会被全局覆盖了,但是大家写插件的过程中也不要忽视了因为在服务器p ...

  9. php解析xml的几种方式

    php提供几种解析xml的类或方法,包括:Xml parser. SimpleXML,.XMLReader,.DOMDocument. XML Expat Parser: XML Parser使用Ex ...

  10. 如何获取gitee上的项目?

    对于没有使用过github/gitee的朋友来说,估计是有点懵. 下面举个例子,比如获取我的gitee上的python接口自动化测试框架 访问主页:https://gitee.com/uncleyon ...