For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3

return [1]

Example 2:

Given n = 6edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5

return [3, 4]

Show Hint

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

 
 
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
//corner case
if ( n <= ) return {}; //construct a edges search data stucture
vector<unordered_set<int>> graph(n);
for (auto e : edges) {
graph[e.first].insert(e.second);
graph[e.second].insert(e.first);
} //find all of leaf nodes
vector<int> current;
for (int i=; i<graph.size(); i++){
if (graph[i].size() == ) current.push_back(i);
} // BFS the graph
while (true) {
vector<int> next;
for (int node : current) {
for (int neighbor : graph[node]) {
graph[neighbor].erase(node);
if (graph[neighbor].size() == ) next.push_back(neighbor);
}
}
if (next.empty()) break;
current = next;
}
return current;
}

每次去掉最外面一圈叶子节点。最后剩下的节点集合即为所求。

310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小的更多相关文章

  1. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. 【LeetCode】310. Minimum Height Trees 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 相似题目 参考资料 日期 题目地址:http ...

  3. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  4. leetcode@ [310] Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  5. [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. lintcode:Find the Connected Component in the Undirected Graph 找出无向图汇总的相连要素

    题目: 找出无向图汇总的相连要素 请找出无向图中相连要素的个数. 图中的每个节点包含其邻居的 1 个标签和 1 个列表.(一个无向图的相连节点(或节点)是一个子图,其中任意两个顶点通过路径相连,且不与 ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. [Swift]LeetCode310. 最小高度树 | Minimum Height Trees

    For an undirected graph with tree characteristics, we can choose any node as the root. The result gr ...

  9. DFS应用——找出无向图的割点

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解 "DFS应用于找割点" 的idea 并用源代码加以实现: 0.2) 必须要事先 做个s ...

随机推荐

  1. SDL结合QWidget的简单使用说明

    SDL(Simple DirectMeida Layer)是一个简单的封装媒体库,功能主要涉及了相关于OpenGL或者DirectX的显卡硬件功能和一些鼠标,键盘等外设访问.这里主要只说明一下它的渲染 ...

  2. 【react 条件渲染】在render的html中使用 三元运算符 进行条件渲染

    return ( {renderedPages.map(page => ( <Button key={page} onClick={() => onPageChange(page)} ...

  3. SQL和access随机数

    Access: CLng(Rnd(种子数字)*1000000)   SQL Server ceiling(rand(abs(checksum(newid())))*1000000)    

  4. 基于 Spark 的文本情感分析

    转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...

  5. (转) 史上最简单的 SpringCloud 教程 | 第一篇: 服务的注册与发现(Eureka)

    一.spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选.分布式会话等等.它运 ...

  6. 运行.xcworkspace项目后报错:'React/RCTBundleURLProvider.h’ file not found

    情况:根据https://github.com/rebeccahughes/react-native-device-info添加依赖库,运行.xcworkspacea项目后报错 解决:Delete n ...

  7. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  8. Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata

    读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...

  9. uva11404

    这题说的是给了一个长度为n的字符串(1000)求最长回文子序列,并输出当str[i]==ste[j]时dp[i][j]=dp[i+1][i-1]+2 否则 dp[i][j]=Max(dp[j+1][i ...

  10. Android 多媒体MediaPlayer使用详解

    现在的手机功能越来越丰富了,遥想10年前,MP3,MP4,MP5,还是很流行的,博主当时读高中时很想拥有一台,可以听音乐和看电影.可是条件有限,学校也禁止此东西,所以只能偷偷的玩.而现在我们的手机也很 ...