2018-04-22 19:19:47

问题描述:

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

问题求解:

首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。

dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。

初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。

递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。

    public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
												

动态规划-Predict the Winner的更多相关文章

  1. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  2. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  3. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  4. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  5. 动态规划/MinMax-Predict the Winner

    2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...

  6. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  8. Predict the Winner LT486

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. Minimax-486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

随机推荐

  1. Linux系统下 Supervisor 安装搭建(yum安装)

    安装Supervisor # 安装supervisor yum install supervisor # 打开supervisor的配置文件 vi /etc/supervisord.conf 将sup ...

  2. Visual Studio实用小技巧

    有一个有关微软Office的笑话,说的是它的特性太多: 当你觉得自己发现了一个Office的新特性时,它已经存在很多年了. 本文将介绍一些在Visual Studio(免费下载)中很实用却被忽略的小技 ...

  3. Yii2框架添加API Modules

    原文链接:http://www.itnose.net/detail/6459353.html : 一.环境部署 1. read fucking Yii Documents. http://www.yi ...

  4. Redis讲解

    buffer  缓冲  用于写 cache  缓存  用于读 redis 支持持久化 安装redis yum -y install redis 配置文件/etc/redis.conf 是否在后台运行 ...

  5. Django框架【基础篇】

    Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...

  6. 【开发者笔记】MQTT python测试笔记

    MQTT是基于订阅/发布的物联网协议. python测试需要一个发送进程和接收进程,即一个发送客户端和一个接收客户端,如果这两个客户端工作在同一个topic下,那么就能进行消息互通了. 服务器用“io ...

  7. 在Java中关于二进制、八进制、十六进制的辨析

    八进制数中不可能出7以上的阿拉伯数字.但如果这个数是123.是567,或12345670,那么它是八进制数还是10进制数?单从数字的角度来讲都有可能! 八进制 所以在Java中规定,一个数如果要指明它 ...

  8. 27Tcp文件传输

    前面介绍了TCP和UDP的通信,只是文体通信,只能传送文字.本次介绍文件传输,也就是文件读写和TCP通信的结合. 解析:根据之前的TCP通信,建立彼此的连接.服务器选择文件,首先将文件的基本信息发送给 ...

  9. hdu5110 dp

    题意 给 了 一 个 矩 阵 然 后 , 潜 艇 可 以 向 前 在 西北和东北之间 的区域, 然后每个潜艇有一个值D ,当到达潜艇距离为D的倍数的时候可以得到这个价值,这样我们1000*1000 的 ...

  10. 20155203 2016-2017-4 《Java程序设计》第8周学习总结

    20155203 2016-2017-4 <Java程序设计>第8周学习总结 教材学习内容总结 1.channel的继承架构 2.position()类似于堆栈操作中的栈顶指针. 3.Pa ...