动态规划-Predict the Winner
2018-04-22 19:19:47
问题描述:
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
问题求解:
首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。
dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。
初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。
递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
动态规划-Predict the Winner的更多相关文章
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
- LN : leetcode 486 Predict the Winner
lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...
- LC 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- 动态规划/MinMax-Predict the Winner
2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...
- [LeetCode] Predict the Winner 预测赢家
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- [Swift]LeetCode486. 预测赢家 | Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Predict the Winner LT486
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Minimax-486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
随机推荐
- java利用poi 把ppt转化为图片,
导入jar包: poi-3.8.jar poi-ooxml-3.9.jar poi-scratchpad-3.8.jar 代码: package test4; import java.awt.Dime ...
- Css-浅谈如何将多个inline或inline-block元素垂直居中
一直以来,前端开发过程中本人遇到最多,最烦的问题之一是元素如何垂直居中,发现开发过程中,元素的垂直居中一直是个很大的麻烦事,经常发现PC端和电脑模拟元素都垂直居中了,但是遇到移 ...
- 04Add.ashx(新增班级)
04Add.html <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <hea ...
- Linux服务器报错too many open files错误解决方案
1.本质解决方案按照oracle的安装脚本中以下几项文件进行相应配置: cp /etc/security/limits.conf /etc/security/limits.conf.bak echo ...
- SQL Server批量数据导出导入BCP&Bulk使用
数据导出导入,首先考虑使用什么技术实现导出与导入利用BCP结合Bulk技术实现数据的导出与导入 1.bcp数据导出(这里是命令行方式),导出的数据需是格式化的,有两种方式可选 a.对传输的数据格式要求 ...
- mysql 整数类型 数值类型 tinyint
1.整数类型 整数类型:TINYINT SMALLINT MEDIUMINT INT BIGINT 作用:存储年龄,等级,id,各种号码等 ============================== ...
- PHP 自动加载的简单实现(推荐)
基于psr的规范,使用命名空间和spl_autoload_register()来实现自动加载 文件结构: |--Api |--Account.php |--User.php |--Service |- ...
- HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)
http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...
- Django:学习笔记(9)——视图
Django:学习笔记(9)——视图 基础视图 基于函数的视图,我们需要在使用条件语句来判断请求类型,并分支处理.但是在基于类的视图中,我们可以在类中定义不同请求类型的方法来处理相对应的请求. 基于函 ...
- VS2010/MFC编程入门之二十六(常用控件:滚动条控件Scroll Bar)
回顾上一节,鸡啄米讲的是组合框控件Combo Box的使用.本节详解滚动条控件Scroll Bar的相关内容. 滚动条控件简介 滚动条大家也很熟悉了,Windows窗口中很多都有滚动条.前面讲的列表框 ...