动态规划-Predict the Winner
2018-04-22 19:19:47
问题描述:
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
问题求解:
首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。
dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。
初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。
递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
动态规划-Predict the Winner的更多相关文章
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
- LN : leetcode 486 Predict the Winner
lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...
- LC 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- 动态规划/MinMax-Predict the Winner
2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...
- [LeetCode] Predict the Winner 预测赢家
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- [Swift]LeetCode486. 预测赢家 | Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Predict the Winner LT486
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Minimax-486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
随机推荐
- Gitlab备份和恢复操作
参考:https://www.cnblogs.com/kevingrace/p/7821529.html 一,设置开启备份以及备份路径 /etc/gitlab/gitlab.rb gitlab_rai ...
- Oracle卸载之正确卸载rac数据库的方法(MOS卸载方法)
一.关闭数据库和资源 1.节点1 [root@node1 bin]# pwd /u01/app/11.2.0/grid/bin [root@node1 bin]# ./crsctl stop crs ...
- OGG双向复制
注意:在进行如下配置之前,先在源数据库(原来的目标数据库)端添加辅助的redolog配置: 1.SQL> alter database add supplemental log dat ...
- Ensure Indexes Fit in RAM
Ensure Indexes Fit in RAM — MongoDB Manual https://docs.mongodb.com/manual/tutorial/ensure-indexes-f ...
- openstack配置域名访问
#openstack配置域名访问 openstack pike 安装 目录汇总 http://www.cnblogs.com/elvi/p/7613861.html #主要是在默认配置的基础上,做了个 ...
- Day01 html详解
day01 html详解 1.html的简介 1.1 什么是html? - HyperText Markup Language:超文本标记语言,网页语言 ...
- python 定义类 学习1
此时的d1就是类Dog的实例化对象 实例化,其实就是以Dog类为模版,在内存里开辟一块空间,存上数据,赋值成一个变量名 # 定义类模板 class dog(object): # 定义类的方法功能 # ...
- JavaScript中的作用域以及this变量
原文:Scope and this in JavaScript 今天我想简单讨论下关于JavaScript的作用域和this变量."作用域"的概念就是说.我们的代码能够从哪里去訪问 ...
- tools-eclipse-004-UML图安装
git:https://github.com/takezoe/amateras-modeler 下载:http://sourceforge.jp/projects/amateras/downloads ...
- mongodb 的使用
install: 1.ubuntu用deb安装. 2.下载压缩文件,绿色的,不用安装. 推荐此方法. 配置dbpath: 1.用deb安装的,会在 /etc 目录下 创建mongodb.conf ...