2018-04-22 19:19:47

问题描述:

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

问题求解:

首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。

dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。

初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。

递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。

    public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
												

动态规划-Predict the Winner的更多相关文章

  1. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  2. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  3. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  4. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  5. 动态规划/MinMax-Predict the Winner

    2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...

  6. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  8. Predict the Winner LT486

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. Minimax-486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

随机推荐

  1. [Android] 配置安卓模拟器,使得dex文件不被优化成odex

    最近做一个模块,需要将apk里面加载的dex文件dump出来,所以需要配置让dalvik不要把dex文件优化成odex. 1. 配置build.prop 主要是通过修改文件/system/build. ...

  2. RPM命令详解(安装、升级、卸载)

    rpm 常用命令1.安装一个包 # rpm -ivh 2.升级一个包 # rpm -Uvh 3.卸载一个包 # rpm -e 4.安装参数 --force 即使覆盖属于其它包的文件也强迫安装 --no ...

  3. 170629、springboot编程之Druid数据源和监控配置二

    上篇是一种配置方式,虽然我们创建了servlet.filter但是没有任务编码,看着是不是很不爽.ok,接下来说一下简介的配置方式,使用代码注册Servlet,也是我个人比较推荐的! 1.创建Drui ...

  4. CentOS7.2使用yum配置LNMP环境

    一,安装系统查看 二,yum安装nginx 设置yum源 rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-c ...

  5. Intellij IDEA常用配置详解

    1. IDEA内存优化 先看看你机器本身的配置而配置. \IntelliJ IDEA 8\bin\idea.exe.vmoptions -------------------------------- ...

  6. HDU_3183_A Magic Lamp

    A Magic Lamp Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. Educational Codeforces Round 28

    A. Curriculum Vitae 题目链接:http://codeforces.com/contest/846/problem/A 题目意思:给你一个只包含0-1的数组,现在要求去可以去掉一些元 ...

  8. django-session和cookie

    在Django里面,使用Cookie和Session看起来好像是一样的,使用的方式都是request.COOKIES[XXX]和request.session[XXX],其中XXX是您想要取得的东西的 ...

  9. 跟我学Makefile(四)

    使用函数:函数调用,很像变量的使用,也是以“$”来标识的,其语法如下: $(<function> <arguments>) 或是 ${<function> < ...

  10. python3 应用 nose_parameterized 实现unittest 参数化

    一.读取变量的值,实现unittest 参数化 import nose_parameterized,unittest def calc(a:int,b:int): return a+b case_da ...