2018-04-22 19:19:47

问题描述:

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

问题求解:

首先我们如果穷举的话,是会出现重叠子问题的,比如A选left,B选left,A选right,B选right等同于A选right,B选right,A选left,B选left。因此适用于动态规划的方法来解决。现在问题就是如何建立这样的一个递推关系式。这条题目的动态规划建立是比较trick的,因此这里做一个介绍。

dp[i][j]:保存的是先手玩家A在i-j之间能获得的做高分数与后手玩家B的最高分数的差值。

初始条件:i == j时,dp[i][j] = nums[i],这也对应着长度为一的情况。

递推关系式:dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]),也就是说,对于当前的先手玩家,他既可以选择前面一个数,也可以选择后面一个数,那么后手玩家的范围就因此减少了,由于存储的是差值,因此可以得到上述的递推式。

    public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) dp[i][i] = nums[i];
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
}
return dp[0][n - 1] >= 0;
}
												

动态规划-Predict the Winner的更多相关文章

  1. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  2. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  3. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  4. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  5. 动态规划/MinMax-Predict the Winner

    2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...

  6. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. [Swift]LeetCode486. 预测赢家 | Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  8. Predict the Winner LT486

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. Minimax-486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

随机推荐

  1. 三维凸包求凸包表面的个数(HDU3662)

    3D Convex Hull Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  2. Linux配置Nginx,MySql,php-fpm开机启动的方法

    一. Nginx 开机启动 1.在/etc/init.d/目录下创建脚本 vim /etc/init.d/nginx 2.编写脚本内容 (将以下复制进去相应改动安装路径) 1 2 3 4 5 6 7 ...

  3. html5新属性contenteditable 对于那些不可编辑的标签,现在都可以编辑了

    contenteditable = true 表示该html标签的内容可以编辑,对于那些不可编辑的标签,现在都可以编辑了.

  4. 沈阳网络赛I-Lattice's basics in digital electronics【模拟】

    42.93% 1000ms 131072K LATTICE is learning Digital Electronic Technology. He is talented, so he under ...

  5. asymmetric cryptographic algorithm

    https://baike.baidu.com/item/非对称加密算法/1208652?fr=aladdin 主要算法 编辑 RSA.Elgamal.背包算法.Rabin.D-H.ECC(椭圆曲线加 ...

  6. 用MongoDB取代RabbitMQ(转)

    原文:http://blog.nosqlfan.com/html/3223.html RabbitMQ是当成应用比较广泛的队列服务系统,其配套的客户端和监控运维方案也比较成熟.BoxedIce的队列服 ...

  7. mysql备份的4种方式

    mysql备份的4种方式 转载自:https://www.cnblogs.com/SQL888/p/5751631.html 总结: 备份方法 备份速度 恢复速度 便捷性 功能 一般用于 cp 快 快 ...

  8. mysql 数据操作 多表查询 子查询 介绍

    子查询就是: 把一条sql语句放在一个括号里,当做另外一条sql语句查询条件使用 拿到这个结果以后 当做下一个sql语句查询条件mysql 数据操作  子查询 #1:子查询是将一个查询语句嵌套在另一个 ...

  9. 002-spring cache 基于声明式注解的缓存-01-Cacheable annotation

    一.简述 对于缓存声明,抽象提供了一组Java注解: @Cacheable触发缓存填充(这里一般放在创建和获取的方法上) @CacheEvict触发缓存驱逐(用于删除的方法上) @CachePut更新 ...

  10. Windows版本搭建安装React Native环境配置

    1 安装Chocolatey 打开cmd黑窗口 @powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-obje ...