【HDU4689】Derangement(动态规划)
【HDU4689】Derangement(动态规划)
题面
Vjudge
给定一个\(+-\)组成的字符串,长度为\(n\)。
如果第\(i\)位是\(+\),那么\(p_i>i\),否则\(p_i<i\)
求满足上述条件的\([1,n]\)的排列个数。
题解
如果所有数都满足\(p_i<i\),那么就是\(RabbitNumbering\)。
考虑如何暴力,我们可以直接大力容斥。
枚举一部分的\(+\),强制将其变为没有任何限制,那么方案数还是上面\(RabbitNumbering\)那题,最后容斥计算即可。
但是这样子复杂度吃不下。
换种方式考虑。
如果我们从左往右依次填数,设\(f[i][j]\)表示当前填到了第\(i\)个位置,有\(j\)个\(+\)不满足。
假设当前位置是\(+\),考虑如何转移
第一种是用当前的\(i\)填掉前面的一个\(+\),这样一定能够满足。
或者让他填掉后面随便一个\(-\)号。
如果当前位置是一个\(-\)的话,我们必须要填掉,
因为前面空出来了\(j\)个\(+\),所以有\(j\)个数可以用来填这个\(-\),组合算一下。
那么,当前的这个\(i\)的抉择和前面一样,所以大力转移一下就好了。
忽然发现我的代码是这道题所有提交记录里面最短的???
#include<cstdio>
#include<cstring>
#define ll long long
ll f[22][22];
char ch[22];
int n;
int main()
{
while(scanf("%s",ch+1)!=EOF)
{
n=strlen(ch+1);memset(f,0,sizeof(f));f[0][0]=1;
for(int i=1;i<=n;++i)
if(ch[i]=='+')
for(int j=1;j<=i;++j)f[i][j]=f[i-1][j-1]+f[i-1][j]*j;
else
for(int j=0;j<=i;++j)f[i][j]=f[i-1][j+1]*(j+1)*(j+1)+f[i-1][j]*j;
printf("%lld\n",f[n][0]);
}
}
【HDU4689】Derangement(动态规划)的更多相关文章
- 【题解】HDU4689 Derangement(有技巧的计数DP)
[题解]HDU4689 Derangement(有技巧的计数DP) 传送门 呵呵没告诉我多测组数,然后\(n\le 20,7000\mathrm{ms}\)我写了个状压上去T了 题目大意: 要你求错排 ...
- HDU-4689 Derangement DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4689 题意:初始序列1,2...n,求所有满足与初始序列规定大小的错排数目.. 这道题目感觉很不错~ ...
- HDU-4689 Derangement
太洗脑了: 题目意思:初始队列是1,2, 3.......n :在打乱这个队列切保证每个数字都不在原来的位置上的情况下给出一个具有+,- 的队列: 被打乱的队列 和 原来队列 对应位置的大小的关系是那 ...
- [HDU4689]Derangement
https://zybuluo.com/ysner/note/1232641 题面 给出\(b_1,b_2,...,b_n\in\{−1,1\}\),求满足\((p_i−i)*b_i<0\)的\ ...
- [leetcode-634-Find the Derangement of An Array]
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- Jlink v8仿真器在64位系统上刷固件
1. 安装软件sam-ba_2.16.exe.本次主要是Jlink v8在64位系统下面的刷固件方法. 2. J-link通过USB连接至电脑,短接PCB上标号为ERASE的焊盘5秒,断开ERASE两 ...
- 查看Oracle数据库表空间大小(空闲、已使用),是否要增加表空间的数据文件
查看Oracle数据库表空间大小(空闲.已使用),是否要增加表空间的数据文件 1.查看表空间已经使用的百分比 Sql代码 select a.tablespace_name,a.bytes/1024/1 ...
- python全栈开发-面向对象-进阶2
python_day_19 今日主要内容: 1.抽象类,接口类 2.多态 3.封装 1.抽象类,接口类 python 没有接口这个概念接口类,抽象类: 制定一个规范. 举个栗子:你的项目经理提一个需求 ...
- PayPal接洽苹果 欲承接手机支付外包
不久前,<华尔街日报>等媒体报道,苹果正计划利用iTunes内部支付功能,推出第三方手机支付服务.美国科技 新闻网站Recode1月30日引述消息人士称,移动支付领军厂商PayPal,目前 ...
- centos上搭建git服务--3
前言:当我们想要实现几个小伙伴合作开发同一个项目,或者建立一个资源分享平台的时候,GIT就是一个很好的选择.当然,既然是一个共有平台,那么把这个平台放到个人计算机上明显是不合适的,因此就要在服务器上搭 ...
- 《JavaScript》web客户端存储
Web存储: 兼容IE8在内的所有主流浏览器,不兼容早期浏览器:支持大容量但非无限量 LocalStorage和sessionStorage是window对象的两个属性,这两个属性都代表同一个stor ...
- Beta版软件使用说明
1引言 1 .1编写目的 编写本使用说明的目的是充分叙述本软件所能实现的功能及其运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息. 1 .2参考资料 1 .3术语 ...
- A8
组员:陈锦谋 今日内容: PS学习.抠图.图标像素调整 明日计划: 继续小组内安排的任务 困难: 无
- 【IdentityServer4文档】- 使用客户端凭据保护 API
使用客户端凭据保护 API quickstart 介绍了使用 IdentityServer 保护 API 的最基本场景. 接下来的场景,我们将定义一个 API 和一个想要访问它的客户端. 客户端将在 ...
- [ Selenium2 从零开始 by Bruce from http://seleniumcn.cn ] 1-8 视频集锦
内容转自: http://blog.csdn.net/sxl0727tu/article/details/51887093\ ************************************* ...