tf.device()指定tensorflow运行的GPU或CPU设备
在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。
设置使用GPU
使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行:
import tensorflow as tf
with tf.device('/gpu:1'):
v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
print sess.run(sumV12)
ConfigProto() 中参数 log_device_placement=True 会打印出执行操作所用的设备,以上输出:
如果安装的是GPU版本的tensorflow,机器上有支持的GPU,也正确安装了显卡驱动、CUDA和cuDNN,默认情况下,Session会在GPU上运行:
import tensorflow as tf
v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
print sess.run(sumV12)
默认在GPU:0上执行:
设置使用cpu
tensorflow中不同的GPU使用/gpu:0和/gpu:1区分,而CPU不区分设备号,统一使用 /cpu:0
import tensorflow as tf
with tf.device('/cpu:0'):
v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
print sess.run(sumV12)
tf.device()指定tensorflow运行的GPU或CPU设备的更多相关文章
- [转载]tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...
- tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...
- tf.Session()函数的参数应用(tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details ...
- Tensorflow 运行警告提示 Your CPU supports instructions that this TensorFlow binary was not compiled to use
由于现在神经网络这个东西比较火,准确的说是深度学习这个东西比较火,我们实验室准备靠这个东西发几个CCF A类的文章,虽然我不太懂这东西,兴趣也一般都是毕竟要跟随主流的,于是今天安装起了 Tensorf ...
- 验证tensorflow版本是GPU还是CPU
reference: https://blog.csdn.net/zlase/article/details/79261348 import numpy import tensorflow as tf ...
- 使用tf.ConfigProto()配置Session运行参数和GPU设备指定
参考链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对sessio ...
- tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构
Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(A ...
- Tensorflow之安装GPU版错误集合
在根据教程http://blog.csdn.net/sb19931201/article/details/53648615安装好全部的时候,却无情的给我抛了几个错: 1.AttributeEr ...
- TensorFlow中使用GPU
TensorFlow默认会占用设备上所有的GPU以及每个GPU的所有显存:如果指定了某块GPU,也会默认一次性占用该GPU的所有显存.可以通过以下方式解决: 1 Python代码中设置环境变量,指定G ...
随机推荐
- unittest框架(三)unittest+yaml数据驱动
学习完了如何用yaml文件管理用例,如何进行单元测试,如何产生漂亮的测试报告,那么结合这几点,我们简单学习下unittest+yaml数据驱动来测试. 第一步:首先,我们建一个yaml文件,管理用例, ...
- 网络协议TCP、Http、webservice、socket区别
网络协议TCP.Http.webservice.socket区别 http 和 webservice 都是基于TCP/IP协议的应用层协议 webservice是基于http的soap协议传输数据 w ...
- python中的排序
今天在http://www.pythontip.com刷题的时候遇到一个排序的问题:一个列表中既有字符串,又有数字,该怎么排序. list = [1,2,5,4,'d','s','e',45] lis ...
- 20145202马超 2016-2017-2 《Java程序设计》第7周学习总结
学号 2016-2017-2 <Java程序设计>第X周学习总结 教材学习内容总结 Arrays:用于操作数组的工具类. 里面都是静态方法. asList:将数组变成list集合. 把数组 ...
- ubuntu14.04安装CUDA8.0
ubuntu安装CUDA 因为深度学习需要用到CUDA,所以写篇博客,记录下自己安装CUDA 的过程. 1 安装前的检查 安装CUDA之前,首先要做一些事情,检查你的机器是否可以安装CUDA. 1.1 ...
- POJ 2288 Islands and Bridges(状压dp)
http://poj.org/problem?id=2288 题意: 有n个岛屿,每个岛屿有一个权值V,一条哈密顿路径C1,C2,...Cn的值为3部分之和: 第1部分,将路径中每个岛屿的权值累加起来 ...
- 【JMeter】 使用Synchronizing Timer设置请求集合点,实现绝对并发
布局设置说明 参数说明: Number of Simulated Users to Group 每次释放的线程数量.如果设置为0,等同于设置为线程租中的线程数量. Timeout in millise ...
- Tensorflow一些常用基本概念与函数(二)
1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf. ...
- apache配置文件详解与优化
apache配置文件详解与优化 一.总结 一句话总结:结合apache配置文件中的英文说明和配置详解一起看 1.apache模块配置用的什么标签? IfModule 例如: <IfModule ...
- 雷林鹏分享:Ruby CGI 编程
Ruby CGI 编程 Ruby 是一门通用的语言,不仅仅是一门应用于WEB开发的语言,但 Ruby 在WEB应用及WEB工具中的开发是最常见的. 使用Ruby您不仅可以编写自己的SMTP服务器,FT ...