下面我们再来看看各种舱级别情况下各性别的获救情况

 fig = plt.figure()
fig.set(alpha=0.5)
plt.title(u"根据舱等级和性别的获救情况",fontproperties=getChineseFont()) ax1 = fig.add_subplot(141)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass != 3].value_counts().plot(kind='bar', label="female highclass", color='#FA2479') ax1.set_xticklabels(['survived','unsurvived'],rotation=0)
ax1.legend(["female/hight_level"], loc='best') ax2=fig.add_subplot(142, sharey=ax1)
data_train.Survived[data_train.Sex == 'female'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='female, low class', color='pink')
ax2.set_xticklabels(["unsurvived", "survived"], rotation=0)
plt.legend(["female/low_level"], loc='best') ax3=fig.add_subplot(143, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass != 3].value_counts().plot(kind='bar', label='male, high class',color='lightblue')
ax3.set_xticklabels(["unsurvived", "survived"], rotation=0)
plt.legend(["male/hight_level"], loc='best') ax4=fig.add_subplot(144, sharey=ax1)
data_train.Survived[data_train.Sex == 'male'][data_train.Pclass == 3].value_counts().plot(kind='bar', label='male low class', color='steelblue')
ax4.set_xticklabels(["unsurvived", "survived"], rotation=0)
plt.legend(["male/low_level"], loc='best') plt.show()

得到下图

下面再看看大家族对结果有什么影响

 g = data_train.groupby(['SibSp','Survived'])
df = pd.DataFrame(g.count()['PassengerId']) print(df)

PassengerId

SibSp

Survived

0

0

398

1

210

1

0

97

1

112

2

0

15

1

13

3

0

12

1

4

4

0

15

1

3

5

0

5

8

0

7

 g = data_train.groupby(['Parch','Survived'])
df = pd.DataFrame(g.count()['PassengerId'])
print(df)

PassengerId

Parch

Survived

0

0

445

1

233

1

0

53

1

65

2

0

40

1

40

3

0

2

1

3

4

0

4

5

0

4

1

1

6

0

1

基本没看出什么特殊关系,暂时作为备选特征。

ticket是船票编号,应该是unique的,和最后的结果没有太大的关系,不纳入考虑的特征范畴
cabin只有204个乘客有值,我们先看看它的一个分布

分布不均匀,应该算作类目型的,本身缺失值就多,还如此不集中,注定很棘手。如果直接按照类目特征处理,太散了,估计每个因子化后的特征都得不到什么权重。加上这么多缺失值,要不先把cabin缺失与否作为条件(虽然这部分信息缺失可能并非未登记,可能只是丢失而已,所以这样做未必妥当)。先在有无cabin信息这个粗粒度上看看Survived的情况。

 #cabin的值计数太分散了,绝大多数Cabin值只出现一次。感觉上作为类目,加入特征未必会有效
#那我们一起看看这个值的有无,对于survival的分布状况,影响如何吧
fig = plt.figure()
fig.set(alpha=0.2) # 设定图表颜色alpha参数 Survived_cabin = data_train.Survived[pd.notnull(data_train.Cabin)].value_counts()
Survived_nocabin = data_train.Survived[pd.isnull(data_train.Cabin)].value_counts()
df=pd.DataFrame({'Notnull':Survived_cabin, 'null':Survived_nocabin}).transpose()
df.plot(kind='bar', stacked=True)
plt.title(u"按Cabin有无看获救情况",fontproperties=getChineseFont())
plt.xlabel(u"Cabin有无",fontproperties=getChineseFont())
plt.ylabel(u"人数",fontproperties=getChineseFont())
plt.show() #似乎有cabin记录的乘客survival比例稍高,那先试试把这个值分为两类,有cabin值/无cabin值,一会儿加到类别特征好了

似乎有cabin的存活率高一些。

因此,我们从最明显突出的数据属性开始,cabin和age,有丢失数据对进一步研究影响较大。

Cabin:暂时按照上面分析的,按Cabin有无数据,将这个属性处理成Ye和No两种类型。

Age:对于年龄缺失,我们会有以下几种处理方法

1.如果缺失的样本占总数比例极高,可能就要直接舍弃了,作为特征加入的话,可能导致噪声的产生,影响最终结果。

2.如果缺失值样本适中,并且该属性非连续值特征属性,那就把NaN作为一个新类别,加到类别特征中。

3.如果缺失值样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个step(比如这里的age,可以考虑每隔2/3岁为一个步长),然后把它离散化之后把NaN作为一个type加到属性类目中。

4.有些情况下,缺失值个数并不多,也可以试着根据已有的值,拟合一下数据补充上。

本例中,后两种方式应该都是可行的,我们先试着补全。

我们使用scikit-learn中的RandomForest拟合一下缺失的年龄数据

 def set_missing_ages(df):
'''
使用RandomForestClassifier填充缺失的年龄
:param df:
:return:
'''
#把已有的数值型特征取出来丢进Random Forest Regressor中
age_df = df[['Age','Fare','Parch','SibSp','Pclass']]
#乘客分成已知年龄和未知年龄两部分
known_age = age_df[age_df.Age.notnull()].as_matrix()
unknown_age = age_df[age_df.Age.isnull()].as_matrix() y = known_age[:,0]#y即目标年龄
X = known_age[:,1:]#X即特征属性值 rfr = RandomForestRegressor(random_state=0,n_estimators=2000,n_jobs=-1)
rfr.fit(X,y) predictedAges = rfr.predict(unknown_age[:,1::])
df.loc[(df.Age.isnull()),'Age'] = predictedAges
return df,rfr def set_Cabin_type(df):
#有客舱信息的为Yes,无客舱信息的为No
df.loc[(df.Cabin.notnull()), 'Cabin'] = "Yes"
df.loc[(df.Cabin.isnull()), 'Cabin'] = "No"
return df data_train, rfr = set_missing_ages(data_train)
data_train = set_Cabin_type(data_train)
print(data_train)

PassengerId

Survived

Pclass

Name

Sex

Age

SibSp

Parch

Ticket

Fare

Cabin

Embarked

0

1

0

3

Braund, Mr. Owen Harris

male

22.000000

1

0

A/5 21171

7.2500

No

S

1

2

1

1

Cumings, Mrs. John Bradley (Florence Briggs Th...

female

38.000000

1

0

PC 17599

71.2833

Yes

C

2

3

1

3

Heikkinen, Miss. Laina

female

26.000000

0

0

STON/O2. 3101282

7.9250

No

S

3

4

1

1

Futrelle, Mrs. Jacques Heath (Lily May Peel)

female

35.000000

1

0

113803

53.1000

Yes

S

4

5

0

3

Allen, Mr. William Henry

male

35.000000

0

0

373450

8.0500

No

S

5

6

0

3

Moran, Mr. James

male

23.828953

0

0

330877

8.4583

No

Q

6

7

0

1

McCarthy, Mr. Timothy J

male

54.000000

0

0

17463

51.8625

Yes

S

7

8

0

3

Palsson, Master. Gosta Leonard

male

2.000000

3

1

349909

21.0750

No

S

8

9

1

3

Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)

female

27.000000

0

2

347742

11.1333

No

S

9

10

1

2

Nasser, Mrs. Nicholas (Adele Achem)

female

14.000000

1

0

237736

30.0708

No

C

10

11

1

3

Sandstrom, Miss. Marguerite Rut

female

4.000000

1

1

PP 9549

16.7000

Yes

S

11

12

1

1

Bonnell, Miss. Elizabeth

female

58.000000

0

0

113783

26.5500

Yes

S

12

13

0

3

Saundercock, Mr. William Henry

male

20.000000

0

0

A/5. 2151

8.0500

No

S

13

14

0

3

Andersson, Mr. Anders Johan

male

39.000000

1

5

347082

31.2750

No

S

14

15

0

3

Vestrom, Miss. Hulda Amanda Adolfina

female

14.000000

0

0

350406

7.8542

No

S

15

16

1

2

Hewlett, Mrs. (Mary D Kingcome)

female

55.000000

0

0

248706

16.0000

No

S

16

17

0

3

Rice, Master. Eugene

male

2.000000

4

1

382652

29.1250

No

Q

17

18

1

2

Williams, Mr. Charles Eugene

male

32.066493

0

0

244373

13.0000

No

S

18

19

0

3

Vander Planke, Mrs. Julius (Emelia Maria Vande...

female

31.000000

1

0

345763

18.0000

No

S

19

20

1

3

Masselmani, Mrs. Fatima

female

29.518205

0

0

2649

7.2250

No

C

20

21

0

2

Fynney, Mr. Joseph J

male

35.000000

0

0

239865

26.0000

No

S

21

22

1

2

Beesley, Mr. Lawrence

male

34.000000

0

0

248698

13.0000

Yes

S

22

23

1

3

McGowan, Miss. Anna "Annie"

female

15.000000

0

0

330923

8.0292

No

Q

23

24

1

1

Sloper, Mr. William Thompson

male

28.000000

0

0

113788

35.5000

Yes

S

24

25

0

3

Palsson, Miss. Torborg Danira

female

8.000000

3

1

349909

21.0750

No

S

25

26

1

3

Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...

female

38.000000

1

5

347077

31.3875

No

S

26

27

0

3

Emir, Mr. Farred Chehab

male

29.518205

0

0

2631

7.2250

No

C

27

28

0

1

Fortune, Mr. Charles Alexander

male

19.000000

3

2

19950

263.0000

Yes

S

28

29

1

3

O'Dwyer, Miss. Ellen "Nellie"

female

22.380113

0

0

330959

7.8792

No

Q

29

30

0

3

Todoroff, Mr. Lalio

male

27.947206

0

0

349216

7.8958

No

S

...

...

...

...

...

...

...

...

...

...

...

...

...

861

862

0

2

Giles, Mr. Frederick Edward

male

21.000000

1

0

28134

11.5000

No

S

862

863

1

1

Swift, Mrs. Frederick Joel (Margaret Welles Ba...

female

48.000000

0

0

17466

25.9292

Yes

S

863

864

0

3

Sage, Miss. Dorothy Edith "Dolly"

female

10.888325

8

2

CA. 2343

69.5500

No

S

864

865

0

2

Gill, Mr. John William

male

24.000000

0

0

233866

13.0000

No

S

865

866

1

2

Bystrom, Mrs. (Karolina)

female

42.000000

0

0

236852

13.0000

No

S

866

867

1

2

Duran y More, Miss. Asuncion

female

27.000000

1

0

SC/PARIS 2149

13.8583

No

C

867

868

0

1

Roebling, Mr. Washington Augustus II

male

31.000000

0

0

PC 17590

50.4958

Yes

S

868

869

0

3

van Melkebeke, Mr. Philemon

male

25.977889

0

0

345777

9.5000

No

S

869

870

1

3

Johnson, Master. Harold Theodor

male

4.000000

1

1

347742

11.1333

No

S

870

871

0

3

Balkic, Mr. Cerin

male

26.000000

0

0

349248

7.8958

No

S

871

872

1

1

Beckwith, Mrs. Richard Leonard (Sallie Monypeny)

female

47.000000

1

1

11751

52.5542

Yes

S

872

873

0

1

Carlsson, Mr. Frans Olof

male

33.000000

0

0

695

5.0000

Yes

S

873

874

0

3

Vander Cruyssen, Mr. Victor

male

47.000000

0

0

345765

9.0000

No

S

874

875

1

2

Abelson, Mrs. Samuel (Hannah Wizosky)

female

28.000000

1

0

P/PP 3381

24.0000

No

C

875

876

1

3

Najib, Miss. Adele Kiamie "Jane"

female

15.000000

0

0

2667

7.2250

No

C

876

877

0

3

Gustafsson, Mr. Alfred Ossian

male

20.000000

0

0

7534

9.8458

No

S

877

878

0

3

Petroff, Mr. Nedelio

male

19.000000

0

0

349212

7.8958

No

S

878

879

0

3

Laleff, Mr. Kristo

male

27.947206

0

0

349217

7.8958

No

S

879

880

1

1

Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)

female

56.000000

0

1

11767

83.1583

Yes

C

880

881

1

2

Shelley, Mrs. William (Imanita Parrish Hall)

female

25.000000

0

1

230433

26.0000

No

S

881

882

0

3

Markun, Mr. Johann

male

33.000000

0

0

349257

7.8958

No

S

882

883

0

3

Dahlberg, Miss. Gerda Ulrika

female

22.000000

0

0

7552

10.5167

No

S

883

884

0

2

Banfield, Mr. Frederick James

male

28.000000

0

0

C.A./SOTON 34068

10.5000

No

S

884

885

0

3

Sutehall, Mr. Henry Jr

male

25.000000

0

0

SOTON/OQ 392076

7.0500

No

S

885

886

0

3

Rice, Mrs. William (Margaret Norton)

female

39.000000

0

5

382652

29.1250

No

Q

886

887

0

2

Montvila, Rev. Juozas

male

27.000000

0

0

211536

13.0000

No

S

887

888

1

1

Graham, Miss. Margaret Edith

female

19.000000

0

0

112053

30.0000

Yes

S

888

889

0

3

Johnston, Miss. Catherine Helen "Carrie"

female

16.232379

1

2

W./C. 6607

23.4500

No

S

889

890

1

1

Behr, Mr. Karl Howell

male

26.000000

0

0

111369

30.0000

Yes

C

890

891

0

3

Dooley, Mr. Patrick

male

32.000000

0

0

370376

7.7500

No

Q

891 rows × 12 columns

使用逻辑回归模型时,需要输入的特征都是数值型特征,我们通常会先对类别型特征因子化/one-hot编码。

例如:

以Embarked为例,原本一个属性维度,因为其取值是[S,C,Q]中任意一个,将其平展开为 Embarked_C,Embarked_S,Embarked_Q三个属性

之前Embarked取值为S的,此时的Embarked_S取值为1,而Embarked_C,Embarked_Q则取值为0

之前Embarked取值为C的,此时的Embarked_C取值为1,而Embarked_S,Embarked_Q则取值为0

之前Embarked取值为Q的,此时的Embarked_Q取值为1,而Embarked_C,Embarked_S则取值为0

下面使用pandas的get_dummies来完成这个工作,并拼接在前面的data_train之上,如下所示:

 dummies_Cabin = pd.get_dummies(data_train['Cabin'], prefix='Cabin')
dummies_Embarked = pd.get_dummies(data_train['Embarked'], prefix='Embarked')
dummies_Sex = pd.get_dummies(data_train['Sex'], prefix='Sex')
dummies_Pclass = pd.get_dummies(data_train['Pclass'], prefix='Pclass')
df = pd.concat([data_train, dummies_Cabin, dummies_Embarked, dummies_Sex, dummies_Pclass], axis=1)
df.drop(['Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True) print(df)

PassengerId

Survived

Age

SibSp

Parch

Fare

Cabin_No

Cabin_Yes

Embarked_C

Embarked_Q

Embarked_S

Sex_female

Sex_male

Pclass_1

Pclass_2

Pclass_3

0

1

0

22.000000

1

0

7.2500

1

0

0

0

1

0

1

0

0

1

1

2

1

38.000000

1

0

71.2833

0

1

1

0

0

1

0

1

0

0

2

3

1

26.000000

0

0

7.9250

1

0

0

0

1

1

0

0

0

1

3

4

1

35.000000

1

0

53.1000

0

1

0

0

1

1

0

1

0

0

4

5

0

35.000000

0

0

8.0500

1

0

0

0

1

0

1

0

0

1

5

6

0

23.828953

0

0

8.4583

1

0

0

1

0

0

1

0

0

1

6

7

0

54.000000

0

0

51.8625

0

1

0

0

1

0

1

1

0

0

7

8

0

2.000000

3

1

21.0750

1

0

0

0

1

0

1

0

0

1

8

9

1

27.000000

0

2

11.1333

1

0

0

0

1

1

0

0

0

1

9

10

1

14.000000

1

0

30.0708

1

0

1

0

0

1

0

0

1

0

10

11

1

4.000000

1

1

16.7000

0

1

0

0

1

1

0

0

0

1

11

12

1

58.000000

0

0

26.5500

0

1

0

0

1

1

0

1

0

0

12

13

0

20.000000

0

0

8.0500

1

0

0

0

1

0

1

0

0

1

13

14

0

39.000000

1

5

31.2750

1

0

0

0

1

0

1

0

0

1

14

15

0

14.000000

0

0

7.8542

1

0

0

0

1

1

0

0

0

1

15

16

1

55.000000

0

0

16.0000

1

0

0

0

1

1

0

0

1

0

16

17

0

2.000000

4

1

29.1250

1

0

0

1

0

0

1

0

0

1

17

18

1

32.066493

0

0

13.0000

1

0

0

0

1

0

1

0

1

0

18

19

0

31.000000

1

0

18.0000

1

0

0

0

1

1

0

0

0

1

19

20

1

29.518205

0

0

7.2250

1

0

1

0

0

1

0

0

0

1

20

21

0

35.000000

0

0

26.0000

1

0

0

0

1

0

1

0

1

0

21

22

1

34.000000

0

0

13.0000

0

1

0

0

1

0

1

0

1

0

22

23

1

15.000000

0

0

8.0292

1

0

0

1

0

1

0

0

0

1

23

24

1

28.000000

0

0

35.5000

0

1

0

0

1

0

1

1

0

0

24

25

0

8.000000

3

1

21.0750

1

0

0

0

1

1

0

0

0

1

25

26

1

38.000000

1

5

31.3875

1

0

0

0

1

1

0

0

0

1

26

27

0

29.518205

0

0

7.2250

1

0

1

0

0

0

1

0

0

1

27

28

0

19.000000

3

2

263.0000

0

1

0

0

1

0

1

1

0

0

28

29

1

22.380113

0

0

7.8792

1

0

0

1

0

1

0

0

0

1

29

30

0

27.947206

0

0

7.8958

1

0

0

0

1

0

1

0

0

1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

861

862

0

21.000000

1

0

11.5000

1

0

0

0

1

0

1

0

1

0

862

863

1

48.000000

0

0

25.9292

0

1

0

0

1

1

0

1

0

0

863

864

0

10.888325

8

2

69.5500

1

0

0

0

1

1

0

0

0

1

864

865

0

24.000000

0

0

13.0000

1

0

0

0

1

0

1

0

1

0

865

866

1

42.000000

0

0

13.0000

1

0

0

0

1

1

0

0

1

0

866

867

1

27.000000

1

0

13.8583

1

0

1

0

0

1

0

0

1

0

867

868

0

31.000000

0

0

50.4958

0

1

0

0

1

0

1

1

0

0

868

869

0

25.977889

0

0

9.5000

1

0

0

0

1

0

1

0

0

1

869

870

1

4.000000

1

1

11.1333

1

0

0

0

1

0

1

0

0

1

870

871

0

26.000000

0

0

7.8958

1

0

0

0

1

0

1

0

0

1

871

872

1

47.000000

1

1

52.5542

0

1

0

0

1

1

0

1

0

0

872

873

0

33.000000

0

0

5.0000

0

1

0

0

1

0

1

1

0

0

873

874

0

47.000000

0

0

9.0000

1

0

0

0

1

0

1

0

0

1

874

875

1

28.000000

1

0

24.0000

1

0

1

0

0

1

0

0

1

0

875

876

1

15.000000

0

0

7.2250

1

0

1

0

0

1

0

0

0

1

876

877

0

20.000000

0

0

9.8458

1

0

0

0

1

0

1

0

0

1

877

878

0

19.000000

0

0

7.8958

1

0

0

0

1

0

1

0

0

1

878

879

0

27.947206

0

0

7.8958

1

0

0

0

1

0

1

0

0

1

879

880

1

56.000000

0

1

83.1583

0

1

1

0

0

1

0

1

0

0

880

881

1

25.000000

0

1

26.0000

1

0

0

0

1

1

0

0

1

0

881

882

0

33.000000

0

0

7.8958

1

0

0

0

1

0

1

0

0

1

882

883

0

22.000000

0

0

10.5167

1

0

0

0

1

1

0

0

0

1

883

884

0

28.000000

0

0

10.5000

1

0

0

0

1

0

1

0

1

0

884

885

0

25.000000

0

0

7.0500

1

0

0

0

1

0

1

0

0

1

885

886

0

39.000000

0

5

29.1250

1

0

0

1

0

1

0

0

0

1

886

887

0

27.000000

0

0

13.0000

1

0

0

0

1

0

1

0

1

0

887

888

1

19.000000

0

0

30.0000

0

1

0

0

1

1

0

1

0

0

888

889

0

16.232379

1

2

23.4500

1

0

0

0

1

1

0

0

0

1

889

890

1

26.000000

0

0

30.0000

0

1

1

0

0

0

1

1

0

0

890

891

0

32.000000

0

0

7.7500

1

0

0

1

0

0

1

0

0

1

891 rows × 16 columns

kaggle-泰坦尼克号Titanic-2的更多相关文章

  1. 数据分析-kaggle泰坦尼克号生存率分析

    概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但 ...

  2. kaggle 泰坦尼克号问题总结

    学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...

  3. 【项目实战】Kaggle泰坦尼克号的幸存者预测

    前言 这是学习视频中留下来的一个作业,我决定根据大佬的步骤来一步一步完成整个项目,项目的下载地址如下:https://www.kaggle.com/c/titanic/data 大佬的传送门:http ...

  4. Kaggle入门——泰坦尼克号生还者预测

    前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一 ...

  5. kaggle& titanic代码

    这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...

  6. kaggle Titanic心得

    Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...

  7. 我的第一个 Kaggle 比赛学习 - Titanic

    背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再 ...

  8. 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster

     下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...

  9. 20151007kaggle Titanic心得

    Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...

  10. 如何做到机器学习竞赛Kaggle排名前2%

    原创文章,同步首发自作者个人博客 .转载请务必在文章开头显眼处注明出处 摘要 本文详述了如何通过数据预览,探索式数据分析,缺失数据填补,删除关联特征以及派生新特征等方法,在Kaggle的Titanic ...

随机推荐

  1. Python编程核心内容 ---- 切片、迭代和列表生成式

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 最近太忙啦.很多事情需要自己处理,感觉时间不够用啊~~~~今后,博客更新时间可能会慢下来(但不能荒废了学习,要学习就 ...

  2. Centos7配置 SNMP服务

    本文转载至:http://blog.51cto.com/5001660/2097212   一.安装yum源安装SNMP软件包 1.更新yum源: yum clean all yum makecach ...

  3. hadoop之 Hadoop 2.x HA 、Federation

    HDFS2.0之HA 主备NameNode: 1.主NameNode对外提供服务,备NameNode同步主NameNode元数据,以待切换: 2.主NameNode的信息发生变化后,会将信息写到共享数 ...

  4. HQL语句:三表查询(一对多,一对多)

    实体类:CrmDepartment package com.learning.crm.department.domain; import java.util.HashSet; import java. ...

  5. 使用SharpZip压缩与解压缩

    使用SharpZip压缩与解压缩 编写人:左丘文 2015-4-11 大家在做项目时,相信会经常性的会遇到要对数据流或dataset byte[] 或文件进行压缩和解压缩,比如:利用webservic ...

  6. Java通过匿名类来实现回调函数

    在C语言中,函数名可以当做函数指针传递给形参从而实现回调 void f1() { printf("f1()\n"); } void f2() { printf("f2() ...

  7. java web 程序---javabean实例--登陆界面并显示用户名和密码

    重点:注意大小写,不注意细节,这点小事,还需要请教 发现一个问题,也是老师当时写的时候,发现代码没错,但是就是运行问题. 大家看,那个java类,我们要求是所有属性均为私有变量,但是方法为公有的,如果 ...

  8. 十一.jQuery源码解析之.pushStack()

    pushStack()顾明思意,就是像桟中添加东西呗,现在看看他是如何添加东西的. 创建一个空的jQuery对象,然后把Dom元素集合放入这个jQuery对象中, 并保留对当前jQuery对象的引用. ...

  9. 四.jQuery源码解析之jQuery.fn.init()的参数解析

    从return new jQuery.fn.init( selector, context, rootjQuery )中可以看出 参数selector和context是来自我们在调用jQuery方法时 ...

  10. 【Codeforces】Educational Codeforces Round 46(Contest 1000)

    题目 传送门:QWQ A:Codehorses T-shirts 题意: 给定一些字符串表示去年和今年的衣服型号大小( XL XXL M...... ),要求用最少的次数把去年的衣服大小改成今年需要的 ...