看了好久的KMP算法,都一直没有看明白,直到看到了这篇博客http://www.tuicool.com/articles/e2Qbyyf让我瞬间顿悟。

如果你看不懂 KMP 算法,那就看一看这篇文章 ( 绝对原创,绝对通俗易懂 )

KMP 算法,俗称“看毛片”算法,是字符串匹配中的很强大的一个算法,不过,对于初学者来说,要弄懂它确实不易。整个寒假,因为家里没有网,为了理解这个算法,那可是花了九牛二虎之力!不过,现在我基本上对这个算法理解算是比较透彻了!特写此文与大家分享分享!

我个人总结了, KMP 算法之所以难懂,很大一部分原因是很多实现的方法在一些细节的差异。怎么说呢,举我寒假学习的例子吧,我是看了一种方法后,似懂非懂,然后去看另外的方法,就全都乱了!体现在几个方面: next 数组,有的叫做“失配函数”,其实是一个东西; next 数组中,有的是以下标为 0 开始的,有的是以 1 开始的; KMP 主算法中,当发生失配时,取的 next 数组的值也不一样!就这样,各说各的,乱的很!

所以,在阐述我的理解之前,我有必要说明一下,我是用 next 数组的, next 数组是以下标 0 开始的!还有,我不会在一些基础的概念上浪费太多,所以你在看这篇文章时必须要懂得一些基本的概念,例如 “ 朴素字符串匹配 ”“ 前缀 ” , “ 后缀 ” 等!还有就是,这篇文章的每一个字都是我辛辛苦苦码出来的,图也是我自己画的!如果要转载,请注明出处!好了,开始吧!

假设在我们的匹配过程中出现了这一种情况:

根据 KMP 算法,在该失配位会调用该位的 next 数组的值!在这里有必要来说一下 next 数组的作用!说的太繁琐怕你听不懂,让我用一句话来说明:

返回失配位之前的最长公共前后缀!

好,不管你懂不懂这句话,我下面的文字和图应该会让你懂这句话的意思以及作用的!

首先,我们取之前已经匹配的部分(即蓝色的那部分!)

我们在上面说到 next 数组的作用时,说到 “ 最长公共前后缀 ” ,体现到图中就是这个样子!

接下来,就是最重要的了!

没错,这个就是 next 数组的作用了 :

返回当前的最长公共前后缀长度,假设为 len 。因为数组是由 0 开始的,所以 next 数组让第 len 位与主串匹配就是拿最长前缀之后的第 1 位与失配位重新匹配,避免匹配串从头开始!如下图所示!

(重新匹配刚才的失配位!)

如果都说成这样你都不明白,那么你真的得重新理解什么是 KMP 算法了!

接下来最重要的,也是 KMP 算法的核心所在,就是 next 数组的求解!不过,在这里我找到了一个全新的理解方法!如果你懂的上面我写的的,那么下面的内容你只需稍微思考一下就行了!

跟刚才一样,我用一句话来阐述一下 next 数组的求解方法,其实也就是两个字:

继承

a 、当前面字符的前一个字符的对称程度为 0 的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是 0 ,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如 agcta 这个里面 t 的是 0 ,那么后面的 a 的对称程度只需要看它是不是等于第一个字符 a 了。

b 、按照这个推理,我们就可以总结一个规律,不仅前面是 0 呀,如果前面一个字符的 next 值是 1 ,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是 1 ,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是 2 了。有两个字符对称了。比如上面 agctag ,倒数第二个 a 的 next 是 1 ,说明它和第一个 a 对称了,接着我们就把最后一个 g 与第二个 g 比较,又相等,自然对称成都就累加了,就是 2 了。

c 、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

如果蓝色的部分相同,则当前 next 数组的值为上一个 next 的值加一,如果不相同,就是我们下面要说的!

如果不相同,用一句话来说,就是:

从前面来找子前后缀

1 、如果要存在对称性,那么对称程度肯定比前面这个的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么就继承前面的对称性了。

2 、要找更小的对称,必然在对称内部还存在子对称,而且这个必须紧接着在子对称之后。

如果看不懂,那么看一下图吧!

好了,我已经把该说的尽可能以最浅显的话和最直接的图展示出来了,如果还是不懂,那我真的没有办法了!

说了这么多,下面是代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 100 void cal_next( char * str, int * next, int len )
{
int i, j; next[] = -;
for( i = ; i < len; i++ )
{
j = next[ i - ];
while( str[ j + ] != str[ i ] && ( j >= ) )
{
j = next[ j ];
}
if( str[ i ] == str[ j + ] )
{
next[ i ] = j + ;
}
else
{
next[ i ] = -;
}
}
} int KMP( char * str, int slen, char * ptr, int plen, int * next )
{
int s_i = , p_i = ; while( s_i < slen && p_i < plen )
{
if( str[ s_i ] == ptr[ p_i ] )
{
s_i++;
p_i++;
}
else
{
if( p_i == )
{
s_i++;
}
else
{
p_i = next[ p_i - ] + ;
}
}
}
return ( p_i == plen ) ? ( s_i - plen ) : -;
} int main()
{
char str[ N ] = {};
char ptr[ N ] = {};
int slen, plen;
int next[ N ]; while( scanf( "%s%s", str, ptr ) )
{
slen = strlen( str );
plen = strlen( ptr );
cal_next( ptr, next, plen );
printf( "%d\n", KMP( str, slen, ptr, plen, next ) );
}
return ;
}

<转>KMP算法详解的更多相关文章

  1. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  2. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  3. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  4. 算法进阶面试题01——KMP算法详解、输出含两次原子串的最短串、判断T1是否包含T2子树、Manacher算法详解、使字符串成为最短回文串

    1.KMP算法详解与应用 子序列:可以连续可以不连续. 子数组/串:要连续 暴力方法:逐个位置比对. KMP:让前面的,指导后面. 概念建设: d的最长前缀与最长后缀的匹配长度为3.(前缀不能到最后一 ...

  5. 数据结构4.3_字符串模式匹配——KMP算法详解

    next数组表示字符串前后缀匹配的最大长度.是KMP算法的精髓所在.可以起到决定模式字符串右移多少长度以达到跳跃式匹配的高效模式. 以下是对next数组的解释: 如何求next数组: 相关链接:按顺序 ...

  6. KMP算法详解&&P3375 【模板】KMP字符串匹配题解

    KMP算法详解: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt(雾)提出的. 对于字符串匹配问题(such as 问你在abababb中有多少个 ...

  7. 字符串匹配KMP算法详解

    1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...

  8. KMP算法详解-彻底清楚了(转载+部分原创)

    引言 KMP算法指的是字符串模式匹配算法,问题是:在主串T中找到第一次出现完整子串P时的起始位置.该算法是三位大牛:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,以其名字首字 ...

  9. KMP算法详解 --- 彻头彻尾理解KMP算法

    前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k. 但是问题在于如何求出这个最大前后缀长度呢? 我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破, 后来翻看 ...

  10. 字符串匹配的KMP算法详解及C#实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

随机推荐

  1. 【WPF】设置ListBox容器Item的流式布局

    需求:像下图那样显示把一组内容装入ListBox中显示.要求用WrapPanel横向布局,顺序如图中的数字. 问题:ListBox默认的布局是从上往下单列的,所以需要设置布局. <ListBox ...

  2. 利用HttpClient写的一个简单页面获取

    之前就听说过利用网络爬虫来获取页面,感觉还挺有意思的,要是能进行一下偏好搜索岂不是可以满足一下窥探欲. 后来从一本书上看到用HttpClient来爬取页面,虽然也有源码,但是也没说用的HttpClie ...

  3. QT 5.7.0 交叉编译记录

    这一篇记录 Qt 5.x cross-compiler with eglfs , 平台是 TI-AM3354, 上一篇SGX的移植就是为了这一次的交叉编译. 一. 下载QT的源码: 地址: http: ...

  4. 分布式系统技术系列--租约(lease) (转载)

    租约(lease)在英文中的含义是“租期”.“承诺”,在分布式中一般描述如下: Lease 是由授权者授予的在一段时间内的承诺. 授权者一旦发出 lease,则无论接受方是否收到,也无论后续接收方处于 ...

  5. golang web开发获取get、post、cookie参数

    在成熟的语言java.python.php要获取这些参数应该来讲都非常简单,过较新的语言golang用获取这些个参数还是费了不少劲,特此记录一下. golang版本:1.3.1在贴代码之前如果能先理解 ...

  6. wysiwyg+ckeditor 安装

    1.下载wysiwyg模块  https://drupal.org/project/wysiwyg 2.下载ckeditor 上传/sites/all/libraries 出现问题: 解决方法: 在文 ...

  7. 分享一下自己写的Python 3的各种PDF文档【花了半年时间那】

    这些文档花了我半年的时间去整理.因为是第一次进行整理,希望帮助后来者少走弯路.毕竟是第一次整理.哪些地方不到位,希望大家和我练习,我们一起把它做好,以下就直接给出下载地址了,都是免积分的下载奥.因此. ...

  8. yarn 用户导致的被挖矿 启用Kerberos认证功能,禁止匿名访问修改8088端口

    用户为dr.who,问下内部使用人员,都没有任务在跑: 结论: 恭喜你,你中毒了,攻击者利用Hadoop Yarn资源管理系统REST API未授权漏洞对服务器进行攻击,攻击者可以在未授权的情况下远程 ...

  9. 判断IE浏览器的最简洁方法

    <script type='text/javascript'> var ie = !-[1,]; alert(ie);</script>

  10. 用R作Polar图等

    用R作如下的各国Gini系数的Polar barChart: 作上图的R代码为: library(ggplot2) GiniData<- read.csv('IncomeInequality.c ...