• apply函数(对一个数组按行或者按列进行计算):
使用格式为:

apply(X, MARGIN, FUN, ...)

其中X为一个数组;MARGIN为一个向量(表示要将函数FUN应用到X的行还是列),若为1表示取行,为2表示取列,为c(1,2)表示行、列都计算。
示例代码:
> ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
> ma
     [,1] [,2] [,3] [,4]
[1,]    1    3    1    7
[2,]    2    4    6    8
> apply(ma, c(1,2), sum)
     [,1] [,2] [,3] [,4]
[1,]    1    3    1    7
[2,]    2    4    6    8
> apply(ma, 1, sum)
[1] 12 20
> apply(ma, 2, sum)
[1]  3  7  7 15

  • 函数tapply(进行分组统计):
使用格式为:

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

其中X通常是一向量;INDEX是一个list对象,且该list中的每一个元素都是与X有同样长度的因子;FUN是需要计算的函数;simplify是逻辑变量,若取值为TRUE(默认值),且函数FUN的计算结果总是为一个标量值,那么函数tapply返回一个数组;若取值为FALSE,则函数tapply的返回值为一个list对象。需要注意的是,当第二个参数INDEX不是因子时,函数 tapply() 同样有效,因为必要时 R 会用 as.factor()把参数强制转换成因子。
示例代码:
> fac <- factor(rep(1:3, length = 17), levels = 1:5)
> fac
 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Levels: 1 2 3 4 5
> tapply(1:17, fac, sum)
 1  2  3  4  5
51 57 45 NA NA
> tapply(1:17, fac, sum, simplify = FALSE)
$`1`
[1] 51

$`2`
[1] 57

$`3`
[1] 45

$`4`
NULL

$`5`
NULL
> tapply(1:17, fac, range)
$`1`
[1]  1 16

$`2`
[1]  2 17

$`3`
[1]  3 15

$`4`
NULL

$`5`
NULL
#利用tapply实现类似于excel里的数据透视表的功能:
> da
   year province sale
1  2007        A    1
2  2007        B    2
3  2007        C    3
4  2007        D    4
5  2008        A    5
6  2008        C    6
7  2008        D    7
8  2009        B    8
9  2009        C    9
10 2009        D   10
> attach(da)
> tapply(sale,list(year,province))
 [1]  1  4  7 10  2  8 11  6  9 12
> tapply(sale,list(year,province),mean)
      A  B C  D
2007  1  2 3  4
2008  5 NA 6  7
2009 NA  8 9 10

  • 函数table(求因子出现的频数):
使用格式为:

table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
    "ifany", "always"), dnn = list.names(...), deparse.level = 1)

其中参数exclude表示哪些因子不计算。
示例代码:
> d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
> d
 [1] A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C
Levels: A B C D E
> table(d)
d
 A  B  C  D  E
10 10 10  0  0
> table(d, exclude="B")
d
 A  C  D  E
10 10  0  0

  • 函数lapply与函数sapply:
lapply的使用格式为:

lapply(X, FUN, ...)

lapply的返回值是和一个和X有相同的长度的list对象,这个list对象中的每个元素是将函数FUN应用到X的每一个元素。其中X为List对象(该list的每个元素都是一个向量),其他类型的对象会被R通过函数as.list()自动转换为list类型。

函数sapply是函数lapply的一个特殊情形,对一些参数的值进行了一些限定,其使用格式为:

sapply(X, FUN,..., simplify = TRUE, USE.NAMES = TRUE)
sapply(*, simplify = FALSE, USE.NAMES = FALSE) 和lapply(*)的返回值是相同的。如果参数simplify=TRUE,则函数sapply的返回值不是一个list,而是一个矩阵;若simplify=FALSE,则函数sapply的返回值仍然是一个list。
示例代码:
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> lapply(x, quantile)
$a
   0%   25%   50%   75%  100%
 1.00  3.25  5.50  7.75 10.00

$beta
         0%         25%         50%         75%        100%
 0.04978707  0.25160736  1.00000000  5.05366896 20.08553692

$logic
  0%  25%  50%  75% 100%
 0.0  0.0  0.5  1.0  1.0

> sapply(x, quantile,simplify=FALSE,use.names=FALSE)
$a
   0%   25%   50%   75%  100%
 1.00  3.25  5.50  7.75 10.00

$beta
         0%         25%         50%         75%        100%
 0.04978707  0.25160736  1.00000000  5.05366896 20.08553692

$logic
  0%  25%  50%  75% 100%
 0.0  0.0  0.5  1.0  1.0
#参数simplify=TRUE的情况
> sapply(x, quantile)
         a        beta logic
0%    1.00  0.04978707   0.0
25%   3.25  0.25160736   0.0
50%   5.50  1.00000000   0.5
75%   7.75  5.05366896   1.0
100% 10.00 20.08553692   1.0

  • 函数mapply:
函数mapply是函数sapply的变形版,mapply 将函数 FUN 依次应用每一个参数的第一个元素、第二个元素、第三个元素上。函数mapply的使用格式如下:

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,USE.NAMES = TRUE)

其中参数MoreArgs表示函数FUN的参数列表。

示例代码:
> mapply(rep, times=1:4, x=4:1)
[[1]]
[1] 4

[[2]]
[1] 3 3

[[3]]
[1] 2 2 2

[[4]]
[1] 1 1 1 1

#直接使用函数rep的结果:
> rep(1:4,1:4)
 [1] 1 2 2 3 3 3 4 4 4 4

 
 
 
 

1、假定有一组成绩数据,要求根据性别进行分组统计:

> score
    ID   score1 score2 Gender
1  101 11.35321    0.9   male
2  102 12.58654    0.6   male
3  103 19.79380    0.9 female
4  104 12.01352    0.4 female
5  105 11.97081    0.4 female
6  106 17.37480    0.7 female
7  107 14.24884    0.3 female
8  108 18.47972    0.8   male
9  109 18.74792    0.8   male
10 110 18.90146    0.7   male

2、方法:使用aggregate(x, by, FUN)

其中x是待折叠的数据对象,by是一个变量名组成的列表,这些变量将被去掉以形成新的观测,而FUN则是用来计算描述性统计量的标量函数,它将被用来计算新观测中的值。

> aggregate(score[,c(2,3)],list(score[,4]),mean)
  Group.1   score1 score2
1  female 15.08035   0.54
2    male 16.01377   0.76

score[,c(2,3)] 表示对score1和score2列进行分组统计

list(score[,4])表示根据score第4列,也就是性别列进行分组统计。

mean表示统计平均值。

也可以写作下面的形式:

> aggregate(score[,c(2,3)],list(score$Gender),mean)
  Group.1   score1 score2
1  female 15.08035   0.54
2    male 16.01377   0.76

可选参考:

library(dplyr)

group_by(data, sex) %>% summarize_each(funs(mean), var1, var2, var3...)

R中利用apply、tapply、lapply、sapply、mapply、table等函数进行分组统计的更多相关文章

  1. 《挑战30天C++入门极限》C++中利用构造函数与无名对象简化运算符重载函数

        C++中利用构造函数与无名对象简化运算符重载函数 在完整描述思想之前,我们先看一下如下的例子,这个例子中的加运算符重载是以非成员函数的方式出现的: //程序作者:管宁  //站点:www.cn ...

  2. R中的apply族函数和多线程计算

    一.apply族函数 1.apply  应用于矩阵和数组 # apply # 1代表行,2代表列 # create a matrix of 10 rows x 2 columns m <- ma ...

  3. R中利用SQL语言读取数据框(sqldf库的使用)

    熟悉MySQL的朋友可以使用sqldf来操作数据框 # 引入sqldf库(sqldf) library(sqldf) # 释放RMySQL库的加载(针对sqldf报错) #detach("p ...

  4. 深入理解js中的apply、call、bind

    概述 js中的apply,call都是为了改变某个函数运行时的上下文环境而存在的,即改变函数内部的this指向. apply() apply 方法传入两个参数:一个是作为函数上下文的对象,另外一个是作 ...

  5. R中绘制聚类的离散图

    R中利用cluster简单的绘制常见聚类离散图 # 引入cluster库(clara.fanny) library(cluster) # 聚类散点图绘制 # 引入factoextra,cluster库 ...

  6. R中读取EXCEL 数据的方法

    最近初学R语言,在R语言读入EXCEL数据格式文件的问题上遇到了困难,经过在网上搜索解决了这一问题,下面归纳几种方法,供大家分享: 第一:R中读取excel文件中的数据的路径: 假定在您的电脑有一个e ...

  7. R中的高效批量处理函数(lapply sapply apply tapply mapply)(转)

    转自:http://blog.csdn.net/wa2003/article/details/45887055 R语言提供了批量处理函数,可以循环遍历某个集合内的所有或部分元素,以简化操作. 这些函数 ...

  8. R中apply等函数用法[转载]

    转自:https://www.cnblogs.com/nanhao/p/6674063.html 1.apply函数——对矩阵 功能是:Retruns a vector or array or lis ...

  9. R语言︱数据分组统计函数族——apply族用法与心得

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:apply族功能强大,实用,可以代替 ...

随机推荐

  1. WCF与WPF

    1. WCF(Windows Communication Foundation )是一个统一的,可用于建立安全,可靠的面向服务的应用高效的开发平台.WCF是构建安全可靠的事务性服务的统一框架.它是一种 ...

  2. python学习笔记——进程间通信方式对比

     通信方式对比   管道 消息队列 共享内存 信号 开辟空间 内存 内存 内存 不开辟额外空间 读写方式 双向/单向(信息流) 先进先出(消息体) 操作内存(数值数组) 发送处理信号 效率 一般 一般 ...

  3. mysql 再查询结果的基础上查询(子查询)

    SELECT A.wx_name, A.wx_litpic, B . * FROM ( SELECT uid, COUNT( * ) AS daticishu FROM statements , ) ...

  4. MySql按字段分组取最大值记录

    数据库原始数据如下:数据库名:tbl_clothers 需求是:按照type分组,并获取个分组中price中的最大值,解决sql如下: 方法一: select * from (select type, ...

  5. putty的复制和粘贴

    putty在终端中的复制--->只要用左键选中即是复制了,千万不要按右键. 在windows下的复制后,在终端粘贴---> 只要右键即可.

  6. mysql执行计划介绍

    简单讲讲mysql的执行计划,只列出了一些常见的情况,希望对大家有所帮助   烂sql不仅直接影响sql的响应时间,更影响db的性能,导致其它正常的sql响应时间变长.如何写好sql,学会看执行计划至 ...

  7. Linux minilogd占用内存过高及开机启动项修改

    minilogd: 今天发现一台服务起的内存正常占用应该在70左右,但是内存占用却到了90%以上,用top查看发现minilogd占用了30%左右的内存,是不符合预期的,查看开机启动项并无minilo ...

  8. Python 2.7.9 Demo - 015.元组的定义、取值、遍历

    #coding=utf-8 #!/usr/bin/python final_list = ('a', 1, 'b', 2, 'c', 3); print final_list[0]; print fi ...

  9. electron 的窗口设置最大化 最小化

    /** * Created by Administrator on 2016/11/23. * 页面对窗口的一些操作封装,用于渲染进程 */ "use strict"; const ...

  10. Windows2012R2版本区别

    From:https://zh.wikipedia.org/wiki/Windows_Server_2012 Windows Server 2012有4种版本:Foundation, Essentia ...