[抄题]:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

Input: n = 5 and edges = [[0, 1], [1, 2], [3, 4]]

     0          3
| |
1 --- 2 4 Output: 2

Example 2:

Input: n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]

     0           4
| |
1 --- 2 --- 3 Output:  1

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

不知道线段怎么加

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

线段也是由点构成的,分成两个点来加

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

每次更新的都是roots数组,把新的root指定给roots数组中的元素

//merge if neccessary
if (root1 != root0) {
roots[root1] = root0;
count--;
}

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

[复杂度]:Time complexity: O(1) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:递归

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

[潜台词] :

class Solution {
public int countComponents(int n, int[][] edges) {
//use union find
//ini
int count = n;
int[] roots = new int[n]; //cc
if (n == 0 || edges == null) return 0; //initialization the roots as themselves
for (int i = 0; i < n; i++)
roots[i] = i; //add every edge
for (int[] edge : edges) {
int root0 = find(edge[0], roots);
int root1 = find(edge[1], roots); //merge if neccessary
if (root1 != root0) {
roots[root1] = root0;
count--;
}
} //return
return count; } public int find(int id, int[] roots) {
while (id != roots[id])
id = roots[roots[id]];
return id;
}
}

323. Number of Connected Components in an Undirected Graph按照线段添加的并查集的更多相关文章

  1. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  2. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  3. [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...

  5. 323. Number of Connected Components in an Undirected Graph

    算连接的..那就是union find了 public class Solution { public int countComponents(int n, int[][] edges) { if(e ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  8. [Locked] Number of Connected Components in an Undirected Graph

    Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. PHP迭代器的小坑

    使用PHP迭代器的时候,需要主要到很多迭代器是对内部迭代器的封装,当外部迭代器移动的时候,实际上也是在移动内部迭代器. 示例一:命令行 &"C:\wamp64\bin\php\php ...

  2. flv格式的播放代码

    <object classid="clsid:D27CDB6E-AE6D-444553540000" class="player2" codebase=& ...

  3. Github使用.gitignore文件忽略不必要上传的文件 (转)

    原文地址: https://blog.csdn.net/gjy211/article/details/51607347 常用编程语言及各种框架平台下的通用   .gitignore   文件 http ...

  4. 【css样式生成 & 图片合并压缩工具】Sprite,你值得拥有

    好久好久没有更新博客了,越来越懒...话说懒也有懒的好处,懒的时候你可能会想着用些神马方法来帮你偷懒.没错,下面就给大家介绍个博主前不久开发的[css样式生成 & 图片合并压缩工具]Spirt ...

  5. Map排序(按key排序,按value排序)

    主要分两种,按键排序.按值排序. 而且,按key排序主要用于TreeMap,而按value排序则对于Map的子类们都适用. 一.按键排序 按Key排序主要用于TreeMap,可以实现按照Key值的大小 ...

  6. VirtualBox的vdi映像导入遇到的uuid冲突问题 (转)

      virtualbox导入vdi文件时出现下面的问题: 打开hard disk D:\software\GT5.0.0.vdi 失败 Cannot register the hard disk 'D ...

  7. TongWEB与JOnAS 对比,国产中间件战斗机东方通TongWEB源码解析

    转自网址: http://bbs.51cto.com/thread-489819-1-1.html 首先需要声明的是,本人出于技术爱好的角度,以下的文字只是对所看到的一些情况的罗列,偶尔附加个人的一些 ...

  8. CentOS下用yum配置php+mysql+apache

    环境: CentOS5.4  yum 想在一台CentOS的机器上安装配置支持dedeCMS的php+mysql+apache环境,把摸索的过程记录如下: 1. 安装Apahce, PHP, Mysq ...

  9. RHEL6安装Oracle 11g R2

    收藏PDF版质料请点这里:http://download.csdn.net/detail/jifeng3518/6464999 1.使用DVD做yum源1.1.新建dvd挂载目录[root@oracl ...

  10. vim自定义配置之autoComplPop设置

    BundlenInstall安装autoComplPop vimConfig/plugin/autoComplPop-setting.vim "autocomplpop 设置 let g:A ...