[抄题]:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

Input: n = 5 and edges = [[0, 1], [1, 2], [3, 4]]

     0          3
| |
1 --- 2 4 Output: 2

Example 2:

Input: n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]

     0           4
| |
1 --- 2 --- 3 Output:  1

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

不知道线段怎么加

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

线段也是由点构成的,分成两个点来加

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

每次更新的都是roots数组,把新的root指定给roots数组中的元素

//merge if neccessary
if (root1 != root0) {
roots[root1] = root0;
count--;
}

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

[复杂度]:Time complexity: O(1) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:递归

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

[潜台词] :

class Solution {
public int countComponents(int n, int[][] edges) {
//use union find
//ini
int count = n;
int[] roots = new int[n]; //cc
if (n == 0 || edges == null) return 0; //initialization the roots as themselves
for (int i = 0; i < n; i++)
roots[i] = i; //add every edge
for (int[] edge : edges) {
int root0 = find(edge[0], roots);
int root1 = find(edge[1], roots); //merge if neccessary
if (root1 != root0) {
roots[root1] = root0;
count--;
}
} //return
return count; } public int find(int id, int[] roots) {
while (id != roots[id])
id = roots[roots[id]];
return id;
}
}

323. Number of Connected Components in an Undirected Graph按照线段添加的并查集的更多相关文章

  1. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  2. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  3. [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...

  5. 323. Number of Connected Components in an Undirected Graph

    算连接的..那就是union find了 public class Solution { public int countComponents(int n, int[][] edges) { if(e ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  8. [Locked] Number of Connected Components in an Undirected Graph

    Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. HDU 2485

    http://acm.hdu.edu.cn/showproblem.php?pid=2485 n个车站,m条边,两边之间费用为1,问最少摧毁多少车站,使得1-n无法在k时间内到达 将2-(n-1)每个 ...

  2. 在 Windows 下安装 Oracle 11g XE (Express Edition)

    Oracle 11g XE 是 Oracle 数据库的免费版本,支持标准版的大部分功能,11g XE 提供 Windows 和 Linux 版本. 做为免费的 Oracle 数据库版本,XE 的限制是 ...

  3. oracle计算两个日期的时间差时分秒

    Oracle函数可以实现诸多的功能,下面就介绍使用oracle函数计算时间差的实现方法. 两个Date类型字段:START_DATE,END_DATE,计算这两个日期的时间差(分别以天,小时,分钟,秒 ...

  4. Mysql5.6 buffer_pool预热功能

    通常在mysql重启服务后,需要通过手工执行SQL来预热buffer_pool,在mysql5.6中,有如下参数可以无需人工干预. innodb_buffer_pool_dump_at_shutdow ...

  5. Linux下利用Shell使PHP并发采集淘宝产品

    上次项目中用到<<PHP采集淘宝商品>> 此方法有一个缺点,就是执行效率问题.一个商品采集平均需要0.8秒.那10000个商品采集完需要2个半小时. 首先想到的解决办法是并发. ...

  6. noip2009最优贸易(水晶球)

    题目:http://codevs.cn/problem/1173/ https://www.luogu.org/problemnew/show/P1073 本来考虑缩点什么的,后来发现不用. 只要记录 ...

  7. Phonegap下localStorage使用实践

    HTML5的Web Storage API提供了两种客户端存储数据的方法 localStorage和sessionStorage. localStorage没有时间限制,程序升级也不会消失,可以满足持 ...

  8. java之RestTemplate的访问应用

    一.REST即表述性状态传递(英文:Representational State Transfer,简称REST)是Roy Fielding博士在2000年他的博士论文中提出来的一种软件架构风格.它是 ...

  9. 生成式对抗网络(GAN)

    生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模 ...

  10. JSP的taglib示例

    web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version="2 ...