posters

时间限制: 1000ms
内存限制: 128000KB

64位整型:      Java 类名:

题目描述

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
• Every candidate can place exactly one poster on the wall.
• All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
• The wall is divided into segments and the width of each segment is one byte.
• Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

 

输入

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

 

输出

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.
http://acm.pku.edu.cn/JudgeOnline/images/2528_1.jpg

 

样例输入

1
5
1 4
2 6
8 10
3 4
7 10

样例输出

4

来源

题意:

   在一面长墙上贴n张海报,第 i 张海报可以从 li 贴到 ri ,海报高低都相等(可以理解为一维模型),按照给出的方法依次粘贴,问最终还能看见海报有几张。

分析:

   起始点与终止点取值范围(1 <= i <= n, 1 <= li <= ri <= 10000000)  然而 我们用到的只有(1 <= n <= 10000)个,只用到了(1/1000)*2的点,要保存整个状态,开10000000的整形数组果断超内存,运用离散化思想用20000的整形数组便能保存整个状态。

   如果按照一般的方法,你在一张海报区域对应范围内 逐个赋值保存状态,离散化后最坏的情况依然为2*c*n2果断超时,这时就要用到线段树来优化了,线段树用到二分思想故最坏情况为2*c*nlogn,(c的范围没有给出,索性考虑在内,但c应该也不会太大)。


 #include <iostream>
#include <algorithm>
#include <map> //映射->离散化
#include <set> //自动去重
using namespace std;
#define MAXN 10005
map <int,int> M;
struct node{
int left;
int right;
int index;
node(): left(), right(), index() {}
} Tree[MAXN * ], input[MAXN]; int point[MAXN * ], sum;
set <int> visible; void BuildTree(int root, int left, int right){ //建立线段树
Tree[root].left = left;
Tree[root].right = right;
Tree[root].index = -;
if (left + < right){
int mid = (left + right) / ;
BuildTree(root * , left, mid);
BuildTree(root * + , mid, right);
}
} void UpdateTree(int k, int a, int b, int index){
if (Tree[k].left == a && Tree[k].right == b){
Tree[k].index = index;
return;
}
if (Tree[k].index != -){
Tree[ * k].index = Tree[ * k + ].index = Tree[k].index;
Tree[k].index = -;
}
int mid = (Tree[k].left + Tree[k].right) / ;
if (b <= mid)
UpdateTree( * k, a, b, index);
else if (a >= mid)
UpdateTree( * k + , a, b, index);
else {
UpdateTree( * k, a, Tree[ * k].right, index);
UpdateTree( * k + , Tree[ * k + ].left, b, index);
}
}
void SearchTree(int k) { //便历
if (Tree[k].index != -)
visible.insert(Tree[k].index);
else if (Tree[k].right > Tree[k].left + ) {
SearchTree( * k);
SearchTree( * k + );
}
}
int main() {
int c, n;
cin >> c;
while (c--) {
cin >> n;
sum = ;
for (int i = ; i < n; i++) {
cin >> input[i].left >> input[i].right;
input[i].left--;
point[sum++] = input[i].left;
point[sum++] = input[i].right;
}
sort(point, point + sum);
sum = unique(point, point + sum) - point;//去重后共sum个点
M.clear();
for(int i=;i<sum;i++){
M[point[i]]=i; //映射
}
BuildTree(, , sum - );
for (int i = ; i < n; i++) {
UpdateTree(, M[input[i].left], M[input[i].right], i);
}
visible.clear();
SearchTree();
cout << visible.size() << endl;
}
return ;
}

NSOJ 4621 posters (离散化+线段树)的更多相关文章

  1. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  2. Mayor's posters(离散化线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 54067   Accepted: 15713 ...

  3. POJ 2528 Mayor&#39;s posters 离散化+线段树

    题目大意:给出一些海报和贴在墙上的区间.问这些海报依照顺序贴完之后,最后能后看到多少种海报. 思路:区间的范围太大,然而最多仅仅会有10000张海报,所以要离散化. 之后用线段树随便搞搞就能过. 关键 ...

  4. 南阳理工 题目9:posters(离散化+线段树)

    posters 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 The citizens of Bytetown, AB, could not stand that ...

  5. Mayor's posters (离散化线段树+对lazy的理解)

    题目 题意: n(n<=10000) 个人依次贴海报,给出每张海报所贴的范围 li,ri(1<=li<=ri<=10000000) .求出最后还能看见多少张海报. 思路: 由于 ...

  6. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

  7. hpu校赛--雪人的高度(离散化线段树)

    1721: 感恩节KK专场——雪人的高度 时间限制: 1 Sec  内存限制: 128 MB 提交: 81  解决: 35 [提交][状态][讨论版] 题目描述 大雪过后,KK决定在春秋大道的某些区间 ...

  8. 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树

    [BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...

  9. 【bzoj4636】蒟蒻的数列 离散化+线段树

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801379.html 题目描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个 ...

  10. 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers

    题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...

随机推荐

  1. PHP获取地址栏传的id值

    function getQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...

  2. 03:成绩排序 个人博客:doubleq.win

    个人博客:doubleq.win 03:成绩排序 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 给出班里某门课程的成绩单,请你按成绩从高到低对成绩单排序输出 ...

  3. 出售基于Html5的高性能GIS平台源码

    远景地理信息系统平台软件 远景地理信息系统平台软件,简称"RemoteGIS",版本V1.0,它是基于HTML5自主研发的新一代WEBGIS平台,它使用Javascript开发,具 ...

  4. zookeeper安装和配置(单机+伪集群+集群)

    #单机模式 解压到合适目录. 进入zookeeper目录下的conf子目录, 复制zoo_sample.cfg-->zoo.cfg(如果没有data和logs就新建):tickTime=2000 ...

  5. maven配置以及在eclipse Mars2中的使用

    通过1.maven的作用 maven也是一种项目管理工具,主要能够将项目中的jar包移除,通过索引的方式调动本地或者远程仓库中的包,从而实现项目的构建.另一个作用能够应用于大型项目的分模块开发. 2. ...

  6. Java和C# RSA加解密相互通信和使用公钥加密传输

    关于JAVA和C#加解密通讯的话,可以用这个BouncyCastle插件,会帮助你解决很多问题 http://www.bouncycastle.org/ //c#使用java给的公钥进行rsa加密 p ...

  7. Python学习---Django的验证码

    [更多参考] http://www.cnblogs.com/wupeiqi/articles/4786251.html

  8. 企业级Apache详解2

    http_conf主配置说明 root@lamp01 apache]# grep -Ev "#|^$" conf/httpd.conf DocumentRoot "/us ...

  9. 新特性之MAPI over HTTP \ 配置 MAPI over HTTP

    Exchange 2016 中的 MAPI over HTTP https://docs.microsoft.com/zh-cn/Exchange/clients/mapi-over-http/map ...

  10. Exchange Server 产品路线图 及 补丁下载

    Exchange Server RU listExchange Server and Update Rollup Build Numbers -TechNet Articles -United Sta ...