题面:



思路:

这里面有坑啊啊啊…..

先普及一下姿势:

  1. 判断无向图欧拉路的方法:

    图连通,只有两个顶点是奇数度,其余都是偶数度的。

  2. 判断无向图欧拉回路的方法:

    图连通,所有顶点都是偶数度。

重点:图连通!!

思路:

先看看图是否联通(就是所有边都能经过么)

再判判是不是欧拉路

经过的次数=(du[i]+1)/2

如果是欧拉回路:枚举起点 再异或一下

不是:输出当前解

就酱~

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1000050
int n,t,m,xx[N],yy[N],h[N],ans,du[N],flg;
int first[N],nxt[N],v[N],tot;
bool vis[N],V[N];
void add(int x,int y){v[tot]=y,nxt[tot]=first[x],first[x]=tot++;}
void dfs(int x){
for(int i=first[x];~i;i=nxt[i])if(!V[i])
vis[v[i]]=1,V[i]=V[i^1]=1,dfs(v[i]);
}
int main(){
scanf("%d",&t);
while(t--){
memset(first,-1,sizeof(first)),memset(vis,0,sizeof(vis));
memset(V,0,sizeof(V));
memset(du,0,sizeof(du)),flg=ans=tot=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
for(int i=1;i<=m;i++){
scanf("%d%d",&xx[i],&yy[i]);
du[xx[i]]++,du[yy[i]]++;
add(xx[i],yy[i]),add(yy[i],xx[i]);
}
dfs(xx[1]),vis[xx[1]]=1;
for(int i=0;i<tot;i++)if(!V[i])goto ed;
for(int i=1;i<=n;i++){
if(!vis[i])continue;
if(du[i]&1)flg++;
du[i]=(du[i]+1)/2;
if(du[i]&1)ans=ans^h[i];
}
if(flg==2)printf("%d\n",ans);
else if(!flg){
int answer=0;
for(int i=1;i<=n;i++)if(vis[i])
answer=max(answer,ans^h[i]);
printf("%d\n",answer);
}
else ed:puts("Impossible");
}
}

HDU 5883 欧拉回路的更多相关文章

  1. The Best Path HDU - 5883(欧拉回路 && 欧拉路径)

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  2. HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路

    给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...

  3. HDU 5883 The Best Path (欧拉路或者欧拉回路)

    题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...

  4. hdu 1116 欧拉回路+并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...

  5. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  6. HDU 3018 欧拉回路

    HDU - 3018 Ant Country consist of N towns.There are M roads connecting the towns. Ant Tony,together ...

  7. HDU 1878 欧拉回路

    并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...

  8. HDU 1878 欧拉回路 图论

    解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...

  9. 【刷题】HDU 5883 The Best Path

    Problem Description Alice is planning her travel route in a beautiful valley. In this valley, there ...

随机推荐

  1. BZOJ 5394 [Ynoi2016]炸脖龙 (线段树+拓展欧拉定理)

    题目大意:给你一个序列,需要支持区间修改,以及查询一段区间$a_{i}^{a_{i+1}^{a_{i+2}...}}mod\;p$的值,每次询问的$p$的值不同 对于区间修改,由线段树完成,没什么好说 ...

  2. Docker yum 安装

      [liwm@Eren ~]$ sudo su[root@Eren liwm]# yum install -y docker 已加载插件:fastestmirror, langpacks, prod ...

  3. PHP设计模式(三)抽象工厂模式(Abstract Factory)

    一.什么是抽象工厂模式 抽象工厂模式的用意为:给客户端提供一个接口,可以创建多个产品族中的产品对象 ,而且使用抽象工厂模式还要满足以下条件: 系统中有多个产品族,而系统一次只可能消费其中一族产品. 同 ...

  4. 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)

    很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...

  5. C# 获取本地电脑所有的盘符

    话不多说,直接上菜:  public List<string> GetRemovableDeviceID() { List<string> deviceIDs = new ...

  6. POJ 1741 Tree 树的分治(点分治)

    题目大意:给出一颗无根树和每条边的权值,求出树上两个点之间距离<=k的点的对数. 思路:树的点分治.利用递归和求树的重心来解决这类问题.由于满足题意的点对一共仅仅有两种: 1.在以该节点的子树中 ...

  7. POJ 题目3321 Apple Tree(线段树)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21566   Accepted: 6548 Descr ...

  8. canvas为什么你指定一个比较小的宽高,但它实际占位却很多?

    ccanvas默认的宽高占位是:300*150  px  所以当你画一个普通的举行,你指定的宽高小于默认宽高的时候,通过审查元素发现周围都是空白的.

  9. 文件IO流总结

    文件在网络上或不同设备之间是怎么传输的,在Java程序中又是怎么来实现文件的传输,带着这两个问题,来了解一下Java中的IO流相关类及操作. 一.什么是流及流的用途 流是一组有顺序,有起点和终点的字节 ...

  10. html5开发页游(前话)

    导师要求模仿某个页游网站开发益智小游戏.老板的要求是要跨平台,IOS,Android.PC.Mac等系统主要通过浏览器打开都能用.那个网站的页游是通过flash实现的,使用这种方法肯定不能满足老板的要 ...