166分数到小数

给定两个整数,分别表示分数的分子 numerator 和分母 denominator,以字符串形式返回小数。如果小数部分为循环小数,则将循环的部分括在括号内。

输入: numerator = 2, denominator = 3
输出: "0.(6)"

思路:

  • 分母、分子为0的情况
  • 新建StringBuilder
  • 结果是否为负数,是则加上负号
  • 分子分母取绝对值
  • 处理整数部分,并判断是否可以整除,是的话返回结果。注意转为long,且用long rem = (num % den) * ,10;来判断是否可以整除,之后会不断用到。
  • 不能整除,那么加上小数点,新建map,用来存储余数及当前结果的长度
  • 只要余数不为0,那么进入循环。
    • 检查map中,当前余数是否已经出现过,如果是,取值,substring处理循环部分
    • 更新map、res和rem
  • 返回res.toString()
// 分母、分子为0的情况
if (denominator == 0) return "";
if (numerator == 0) return "0"; StringBuilder res = new StringBuilder();
// 结果是否为负数
if ((numerator < 0) ^ (denominator < 0)) res.append("-"); // 取绝对值,方便处理
long num = numerator, den = denominator;
num = Math.abs(num);
den = Math.abs(den); // 整数部分
res.append(num / den);
long rem = (num % den) * 10;
if (rem == 0) return res.toString(); // 负数部分
res.append(".");
HashMap<Long, Integer> map = new HashMap<Long, Integer>(); while (rem != 0) {
if (map.containsKey(rem)) {
Integer loc = map.get(rem);
String p1 = res.substring(0, loc);
String p2 = res.substring(loc);
res = new StringBuilder(p1 + "(" + p2 + ")");
return res.toString();
}
map.put(rem, res.length());
res.append(rem / den);
rem = (rem % den) * 10;
}
return res.toString();

169/229求众数

169次数大于一半才是众数

思路:

  • 设置maj和cnt变量
  • 遍历
    • 如果cnt==0,那么maj更新为当前num,cnt++,即初始化为1,否则如果重复,cnt++,不重复cnt--
int maj = 0, cnt = 0;

// 遍历
for (int num : nums){
if (num == maj){
cnt++;
}
else if (cnt == 0) {
maj = num;
cnt++;
}
else cnt--;
}

229超过n/3属于众数

思路

  • 和上面类似,但设置两个候选众数。而且要对这两个候选变量进行验证,即是否真的超过n/3
int m = 0, n = 0, cm = 0, cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a ==n) ++cn;
else if (cm == 0) m = a, cm = 1;
else if (cn == 0) n = a, cn = 1;
else --cm, --cn;
}
cm = cn = 0;
for (auto &a : nums) {
if (a == m) ++cm;
else if (a == n) ++cn;
}
if (cm > nums.size() / 3) res.push_back(m);
if (cn > nums.size() / 3) res.push_back(n);
return res;

238除自身以外数组的乘积

输入: [1,2,3,4]
输出: [24,12,8,6]

思路:题目不能用除法

  • 新建数组记录每个数字左边的累积,然后乘上右边的累乘。右边的累乘用一个变量表示,不断作用于存储了左边累积的数组
  • 注意边界问题:左边界初始化为1,右边界记录的是[0, n-2]的累积,所以不需要nums[n-1]

注意边界初始化record[0] = 1和right = 1,再根据例子列出左累乘[1,1,2,6]就可已解出

int n = nums.length;
int[] record = new int[n];
record[0] = 1;
for (int i = 1; i < n; i++){
record[i] = record[i-1] * nums[i-1];
} int right = 1;
for (int i = n - 1; i >=0; i--){
record[i] *= right;
right *= nums[i];
} return record;

69Sqrt(x) 求平方根

if (x == 0) return 0;
double res = (double) x;
double last = 0.0;
while (res != last) {
last = res;
res = res - x / (2 * res); // 求解看下面
}
return (int) res;

f(x) = x2 - n

(f(x) - f(xi))/ (x - xi) = f'(xi)

求出xi+1 = g(x)即可,x表示上面res,f(x)表示上面的参数x

231Power of Two

n > 0 && (n & (n-1)) == 0

leetcode数学相关的更多相关文章

  1. codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)

    题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...

  2. 【3D研发笔记】之【数学相关】(一):坐标系

    现在开始学习3D基础相关的知识,本系列的数学相关笔记是基于阅读书籍<3D数学基础:图形与游戏开发>而来,实现代码使用AS3,项目地址是:https://github.com/hammerc ...

  3. [自用]多项式类数学相关(定理&证明&板子)

    写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的 ...

  4. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  5. [总结]多项式类数学相关(定理&证明&板子)

    目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代 ...

  6. [总结]其他杂项数学相关(定理&证明&板子)

    目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...

  7. Python学习笔记17:标准库之数学相关(math包,random包)

    前面几节看得真心累.如今先来点简单easy理解的内容. 一 math包 math包主要处理数学相关的运算. 常数 math.e   # 自然常数e math.pi  # 圆周率pi 运算函数 math ...

  8. Java.util.Math类--数学相关的工具类

    Math类--数学相关的工具类 java.util.Math类是数学相关的工具类,里面提供了大量的静态方法,完成与数学运算相关的操作. public static double abs(double ...

  9. leetcode tree相关题目总结

    leetcode tree相关题目小结 所使用的方法不外乎递归,DFS,BFS. 1. 题100 Same Tree Given two binary trees, write a function ...

随机推荐

  1. SQL基本操作——表的创建

    通过代码方式创建数据库 create database MyDatabaseNew on primary ( --名字 name='MyDatabaseNew_data', --路径 filename ...

  2. 六时车主 App 隐私政策

    六时车主 App 隐私政策   本应用尊重并保护所有使用服务用户的个人隐私权.为了给您提供更准确.更有个性化的服务,本应用会按照本隐私权政策的规定使用和披露您的个人信息.但本应用将以高度的勤勉.审慎义 ...

  3. postfix 邮件中继配置

    Postfix 配置邮件中继 A 邮件发送服务器B 邮件中继服务器 A. 配置发件服务器 # 开启转发规则 [root@Postfix ~]# vi /etc/postfix/main.cf tran ...

  4. ES6 中set的用法

  5. VM虚拟机NAT链接外网

    1.vi /etc/sysconfig/networkNETWORKING=yesHOSTNAME=localhost.localdomainGATEWAY=192.168.110.2 2.vi /e ...

  6. [luogu4728 HNOI2009] 双递增序列 (dp)

    传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...

  7. MySql数据库优化可以从哪几个方面进行?

    1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽 ...

  8. mongoDB全文索引

    相关文章:php使用Coreseek实现全文索引 Introduction Mongo provides some functionality that is useful for text sear ...

  9. noip模拟赛 同余方程组

    分析:这道题一个一个枚举都能有70分...... 前60分可以用中国剩余定理搞一搞.然而并没有枚举分数高......考虑怎么省去不必要的枚举,每次跳都只跳a的倍数,这样对前面的式子没有影响,为了使得这 ...

  10. redo allocation latch redo copy latch

    这两个latch 是干什么的一直有点迷糊,刚才上网查了一下,总结如下: redo allocation latch 在Log Buffer中分配内存空间时需要获取Redo allocation lat ...