CodeForcesGym 100735B Retrospective Sequence
Retrospective Sequence
This problem will be judged on CodeForcesGym. Original ID: 100735B
64-bit integer IO format: %I64d Java class name: (Any)
Retrospective sequence is a recursive sequence that is defined through itself. For example Fibonacci specifies the rate at which a population of rabbits reproduces and it can be generalized to a retrospective sequence. In this problem you will have to find the n-th Retrospective Sequence modulo MOD = 1000000009. The first (1 ≤ N ≤ 20) elements of the sequence are specified. The remaining elements of the sequence depend on some of the previous N elements. Formally, the sequence can be written as Fm = Fm - k1 + Fm - k2 + ... + Fm - ki + ... + Fm - kC - 1 + Fm - kC. Here, C is the number of previous elements the m-th element depends on, 1 ≤ ki ≤ N.
Input
The first line of each test case contains 3 numbers, the number (1 ≤ N ≤ 20) of elements of the retrospective sequence that are specified, the index (1 ≤ M ≤ 1018) of the sequence element that has to be found modulo MOD, the number (1 ≤ C ≤ N) of previous elements the i-th element of the sequence depends on.
The second line of each test case contains N integers specifying 0 ≤ Fi ≤ 10, (1 ≤ i ≤ N).
The third line of each test case contains C ≥ 1 integers specifying k1, k2, ..., kC - 1, kC (1 ≤ ki ≤ N).
Output
Output single integer R, where R is FM modulo MOD.
Sample Input
2 2 2
1 1
1 2
1
2 7 2
1 1
1 2
13
3 100000000000 3
0 1 2
1 2 3
48407255
Source
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = ;
LL n,N,M,C;
struct Matrix{
LL m[][];
void init(){
memset(m,,sizeof m);
}
void setOne(){
init();
for(int i = ; i < ; ++i) m[i][i] = ;
}
Matrix(){
init();
}
Matrix operator*(const Matrix &rhs) const{
Matrix ret;
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j)
ret.m[i][j] = (ret.m[i][j] + m[i][k]*rhs.m[k][j]%mod)%mod;
return ret;
}
void print(){
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j)
cout<<m[i][j]<<" ";
cout<<endl;
}
cout<<endl;
}
};
Matrix a,b;
void quickPow(LL index){
//Matrix ret;
//ret.setOne();
while(index){
if(index&) a = a*b;
index >>= ;
b = b*b;
}
//a = a*ret;
}
int main(){
while(~scanf("%I64d%I64d%I64d",&N,&M,&C)){
a.init();
b.init();
n = N;
for(int i = ; i <= N; ++i){
scanf("%I64d",&a.m[][i]);
b.m[i+][i]++;
}
for(int i = ,tmp; i <= C; ++i){
scanf("%d",&tmp);
b.m[N + - tmp][n]++;
}
if(M <= N){
printf("%I64d\n",a.m[][M]%mod);
continue;
}
quickPow(M - N);
printf("%I64d\n",a.m[][n]%mod);
}
return ;
}
/*
2 3 2
1 1
1 2 3 5 3
0 1 2
1 2 3
*/
CodeForcesGym 100735B Retrospective Sequence的更多相关文章
- CodeForcesGym 100641B A Cure for the Common Code
A Cure for the Common Code Time Limit: 3000ms Memory Limit: 262144KB This problem will be judged on ...
- oracle SEQUENCE 创建, 修改,删除
oracle创建序列化: CREATE SEQUENCE seq_itv_collection INCREMENT BY 1 -- 每次加几个 STA ...
- Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等
功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...
- DG gap sequence修复一例
环境:Oracle 11.2.0.4 DG 故障现象: 客户在备库告警日志中发现GAP sequence提示信息: Mon Nov 21 09:53:29 2016 Media Recovery Wa ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Sequence Reconstruction 序列重建
Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...
- [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列
Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Longest Consecutive Sequence 求最长连续序列
Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...
随机推荐
- bzoj 4537 最小公倍数
给定一张N个顶点M条边的无向图 每条边上带有权值 所有权值都可以分解成2^a*3^b的形式 q个询问,每次询问给定四个参数u.v.a和b,请你求出是否存在一条顶点u到v之间的路径,使得路径依次经过的边 ...
- bzoj 2069 [ POI 2004 ] ZAW —— 多起点最短路 + 二进制划分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2069 首先,对于和 1 相连的点,一定是从某个点出发,回到另一个点: 所以需要枚举起点和终点 ...
- JSP-Runoob:JSP 自动刷新
ylbtech-JSP-Runoob:JSP 自动刷新 1.返回顶部 1. JSP 自动刷新 想象一下,如果要直播比赛的比分,或股票市场的实时状态,或当前的外汇配给,该怎么实现呢?显然,要实现这种实时 ...
- Ubuntu下FileZilla的安装(转载)
转自:http://os.51cto.com/art/201103/247564.htm FileZilla是一个免费而且开源的FTP客户端软件,共有两种版本:客户端版本.服务器版本.FileZill ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- 【转】 [MySQL 查询语句]——分组查询group by
group by (1) group by的含义:将查询结果按照1个或多个字段进行分组,字段值相同的为一组(2) group by可用于单个字段分组,也可用于多个字段分组 select * from ...
- Python多线程、多进程
1.from multiprocessing import Process ; from threading import Thread 2.进程之间的数据传输 ,一般会使用到pipes, qu ...
- 329 Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path.From each cell, you can eith ...
- windows server 2008 r2 安裝IE11
https://support.microsoft.com/en-us/help/2847882/prerequisite-updates-for-internet-explorer-11 https ...
- SublimeText学习(一)-安装
1.下载安装包:http://www.sublimetext.com/2 2.开始安装,一直下一步 3.开始汉化 汉化包下载:http://files.cnblogs.com/files/2star/ ...