spark 随机森林算法案例实战
随机森林算法
由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放回随机抽样得到特征子集,并据此得到其最优切分点,这便是随机森林算法的基本原理。图 3 给出了随机森林算法分类原理,从图中可以看到,随机森林是一个组合模型,内部仍然是基于决策树,同单一的决策树分类不同的是,随机森林通过多个决策树投票结果进行分类,算法不容易出现过度拟合问题。
图 3. 随机森林示意图
随机森林算法案例实战
本节将通过介绍一个案例来说明随机森林的具体应用。一般银行在货款之前都需要对客户的还款能力进行评估,但如果客户数据量比较庞大,信贷审核人员的压力会非常大,此时常常会希望通过计算机来进行辅助决策。随机森林算法可以在该场景下使用,例如可以将原有的历史数据输入到随机森林算法当中进行数据训练,利用训练后得到的模型对新的客户数据进行分类,这样便可以过滤掉大量的无还款能力的客户,如此便能极大地减少信货审核人员的工作量。
假设存在下列信贷用户历史还款记录:
表 2. 信贷用户历史还款数据表
记录号 | 是否拥有房产(是/否) | 婚姻情况(单身、已婚、离婚) | 年收入(单位:万元) | 是否具备还款能力(是、否) |
---|---|---|---|---|
10001 | 否 | 已婚 | 10 | 是 |
10002 | 否 | 单身 | 8 | 是 |
10003 | 是 | 单身 | 13 | 是 |
…… | …. | ….. | …. | …… |
11000 | 是 | 单身 | 8 | 否 |
上述信贷用户历史还款记录被格式化为 label index1:feature1 index2:feature2 index3:feature3 这种格式,例如上表中的第一条记录将被格式化为 0 1:0 2:1 3:10,各字段含义如下:
是否具备还款能力 是否拥有房产 婚姻情况,0 表示单身、 年收入
0 表示是,1 表示否 0 表示否,1 表示是 1 表示已婚、2 表示离婚 填入实际数字
0 1:0 2:1 3:10
将表中所有数据转换后,保存为 sample_data.txt,该数据用于训练随机森林。测试数据为:
表 3. 测试数据表
是否拥有房产(是/否) | 婚姻情况(单身、已婚、离婚) | 年收入(单位:万元) |
---|---|---|
否 | 已婚 | 12 |
如果随机森林模型训练正确的话,上面这条用户数据得到的结果应该是具备还款能力,为方便后期处理,我们将其保存为 input.txt,内容为:
0 1:0 2:1 3:12
将 sample_data.txt、input.txt 利用 hadoop fs –put input.txt sample_data.txt /data 上传到 HDFS 中的/data 目录当中,再编写如清单 9 所示的代码进行验证
清单 9. 判断客户是否具有还贷能力
package cn.ml import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.linalg.Vectors object RandomForstExample {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("RandomForestExample").
setMaster("spark://sparkmaster:7077")
val sc = new SparkContext(sparkConf) val data: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "/data/sample_data.txt") val numClasses = 2
val featureSubsetStrategy = "auto"
val numTrees = 3
val model: RandomForestModel =RandomForest.trainClassifier(
data, Strategy.defaultStrategy("classification"),numTrees,
featureSubsetStrategy,new java.util.Random().nextInt()) val input: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "/data/input.txt") val predictResult = input.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
//打印输出结果,在 spark-shell 上执行时使用
predictResult.collect()
//将结果保存到 hdfs //predictResult.saveAsTextFile("/data/predictResult")
sc.stop() }
}
上述代码既可以打包后利用 spark-summit 提交到服务器上执行,也可以在 spark-shell 上执行查看结果. 图 10 给出了训练得到的
RadomForest 模型结果,图 11 给出了 RandomForest 模型预测得到的结果,可以看到预测结果与预期是一致的。
图 10. 训练得到的 RadomForest 模型
图 11. collect 方法返回的结果
摘自:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-random-forest/index.html
spark 随机森林算法案例实战的更多相关文章
- Spark随机森林实战
package big.data.analyse.ml.randomforest import org.apache.spark.ml.Pipeline import org.apache.spark ...
- H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...
- Spark mllib 随机森林算法的简单应用(附代码)
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错 ...
- 随机森林算法demo python spark
关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accu ...
- Spark随机森林实现学习
前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样.单机上一些直观的操作(递归),在 ...
- Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...
- 《图解Spark:核心技术与案例实战》作者经验谈
1,看您有维护博客,还利用业余时间著书,在技术输出.自我提升以及本职工作的时间利用上您有没有什么心得和大家分享?(也可以包含一些您写书的小故事.)回答:在工作之余能够写博客.著书主要对技术的坚持和热爱 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
随机推荐
- 前端(小程序)项目Aes.js/Md5.js加密的处理方法
做项目中需要对前端数据加密传输这个时候需要用到前端加密的算法主要是:Aes.js,Md5.js 一.Vue项目用到的aes.js加密. 1.直接在index.html引入aes.js或者在npm in ...
- [Offer收割]编程练习赛32
气泡图 两两判断关系,dfs. #include<stdio.h> #include<string.h> #include<stdlib.h> #include&l ...
- Android PopupWindow使用方法小结
前几天要用到PopupWindow,一时竟想不起来怎么用,赶紧上网查了查,自己写了个demo,并在此记录一下PopupWindow的用法. 使用场景 PopupWindow,顾名思义,就是弹窗,在很多 ...
- 微信小程序开发之animation动画实现
1. 创建动画实例 wx.createAnimation(OBJECT) 创建一个动画实例animation.调用实例的方法来描述动画.最后通过动画实例的export方法导出动画数据传递给组件的ani ...
- 谷歌C++编程为何禁止缺省参数
C++的缺省参数尽量不要使用,结果可能出乎我们的意料,下面的程序大家看看输出结果是多少? ) cout << num << endl; ...
- DeepMind用ReinforcementLearning玩游戏
原文 : http://dataunion.org/?p=639 1.引言 说到机器学习最酷的分支,非Deep learning和Reinforcement learning莫属(以下分别简称DL和 ...
- 基于MapReduce的贝叶斯网络算法研究参考文献
原文链接(系列):http://blog.csdn.net/XuanZuoNuo/article/details/10472219 论文: 加速贝叶斯网络:Accelerating Bayesian ...
- 01--数据结构——动态链表(C++)
数据结构——动态链表(C++) 定义一个节点: [cpp] view plain copy print? #include <iostream> using namespace s ...
- javaee 文件的读取
package Shurushucu; import java.io.FileNotFoundException; import java.io.FileOutputStream; import ja ...
- ES2015 模板字符串 ``
js中类似`${xx,yy}`的语句是什么意思? `string` 是模板字符串,ES2015新增的符号. var x = 'a', y = 'b'; var z = `${x,y}`; //'b' ...