Havel-Hakimi定理

当年一度热门出如今ACM赛场上的算法。

算法定义:

Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的。

2。首先介绍一下度序列:若把图 G 全部顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。

3。一个非负整数组成的有限序列假设是某个无向图的序列,则称该序列是可图的。

4。判定过程:(1)对当前数列排序,使其呈递减,(2)从S【2】開始对其后S【1】个数字-1,(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。

5,举例:序列S:7,7,4,3,3,3,2,1  删除序列S的首项 7 。对其后的7项每项减1。得到:6,3,2,2,2,1,0,继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0。-1,到这一步出现了负数,因此该序列是不可图的。

有2种不合理的情况:

(1)某次对剩下序列排序后。最大的度数(设为d1)超过了剩下的顶点数;

(2)对最大度数后面的d1个数各减1后,出现了负数。

两道模板题:HDU2454(纯裸题) / poj 1695(略微改一下就好了)

模板:

struct Node{
int id,num;
bool operator < (const Node& rhs) const {
if(num == rhs.num)
return id < rhs.id;
return num > rhs.num;
}
}node[MAXN];
int n;
int mp[MAXN][MAXN]; void solve() {
int sum = 0;
for(int i = 0;i < n;++i)
sum += node[i].num; if(sum & 1) {
puts("NO");
return;
} int flag = 0;
memset(mp,0,sizeof(mp)); for(int i = 0;i < n;++i) {
sort(node,node + n); if(0 == node[0].num) {
flag = 1;
break;
} for(int j = 0;j < node[0].num;++j) {
if(--node[j+1].num < 0) {
flag = 2;
break;
}
mp[node[0].id][node[j+1].id] = mp[node[j+1].id][node[0].id] = 1;
}
node[0].num = 0;
if(flag == 2) break;
} if(flag == 1) {
puts("YES");
for(int i = 0;i < n;++i)
for(int j = 0;j < n;++j)
printf("%d%c",mp[i][j],j==n-1?'\n':' ');
} else {
puts("NO");
}
}

Havel-Hakimi定理 hdu2454 / poj1695 Havel-Hakimi定理的更多相关文章

  1. 旋度定理(Curl Theorem)和散度定理(Divergence theorem)

    原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...

  2. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  3. 【分享】IT产业中的三大定理(一) —— 摩尔定理(Moore's Law)

    科技行业流传着很多关于比尔·盖茨的故事,其中一个是他和通用汽车公司老板之间的对话.盖茨说,如果汽车工业能够像计算机领域一样发展,那么今天,买一辆汽车只需要 25 美元,一升汽油能跑四百公里.通用汽车老 ...

  4. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

  5. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  8. Gershgorin圆盘定理

    众所周知,对一个$n$阶方阵求取特征值需要解一个一元$n$次方程,当$n$很大时,这是很难实现的.但是,在有些涉及矩阵的实际问题中,我们并不需要知道矩阵特征值的准确值,而只需要知道其大概范围就行了,例 ...

  9. CAP定理与RDBMS的ACID

    一.分布式领域CAP理论 CAP定理指在设计分布式系统时,一致性(Consistent).可用性(Availability).可靠性(分区容忍性Partition Tolerance)三个属性不可能同 ...

随机推荐

  1. POJ 3252 Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10223   Accepted: 3726 De ...

  2. Android HttpLoggingInterceptor的用法简介

    该拦截器用于记录应用中的网络请求的信息. 示例 OkHttpClient client = new OkHttpClient(); HttpLoggingInterceptor logging = n ...

  3. Eclipse中Git插件使用技巧:[5]还原文件

    如果修改了某个文件并未提交至本地库(add index),那么怎么还原呢?Git插件中并不像Svn插件直接提供有还原方式.其实无论是否提交至本地库或者远程库,还原操作的本质都是将文件的当前版本还原至之 ...

  4. OSX: 逻辑卷管理系统Core Storage(1)

    Mac高大上嘛? Mac由于贵就高大上了?Mac由于没有这个哪个就不高大上了?本文没有结论,仅仅是回归技术本源,是不是高大上还要大家自己评说. 大多数Mac用户可能并不在乎苹果的OS X操作系统缺少一 ...

  5. Flume Interceptors官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...

  6. Java – Reading a Large File Efficiently--转

    原文地址:http://www.baeldung.com/java-read-lines-large-file 1. Overview This tutorial will show how to r ...

  7. Maven搭建Spring Security3.2项目详解

    本来是打算在上一篇SpringMVC+Hibernate上写的,结果发现上面那篇 一起整合的,结果发现上一篇内容实在是太长了,就另起一篇,这篇主要是采用 Maven搭建Spring+SpringMVC ...

  8. Kaggle实战分类问题2

    Kaggle实战之二分类问题 0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 “尽管新技术新算法层出不穷,但是掌握 ...

  9. Android 仿今日头条频道管理(下)(GridView之间Item的移动和拖拽)

    前言 上篇博客我们说到了今日头条频道管理的操作交互体验,我也介绍了2个GridView之间Item的相互移动.详情请參考:Android 仿今日头条频道管理(上)(GridView之间Item的移动和 ...

  10. Linux高性能server编程——系统检測工具

    系统检測工具 tcpdump tcpdump是一款经典的抓包工具,tcpdump给使用者提供了大量的选项,泳衣过滤数据报或者定制输出格式. lsof lsof是一个列出当前系统打开的文件描写叙述符的工 ...