【链接】点击打开链接


【题意】


给你一棵n节点的树,现在让你放k个猴子,可以删边,问最少可以剩余几条边,放k个猴子,满足任意一个猴

子至少与一只猴子相连。2<=k<=n<=1e5


【题解】


一条边最划算的做法就是,边的两个端点连的是两个单独的不同的点
这两个点都没有和其他点相连
而原题意可以理解为,用最少的边凑够k只猴子.
上面说的这种做法,每次可以凑2只猴子
显然是最优的。
于是我们优先做这样的连法
其实也就是在这棵树上选最多的相邻点对数
树肯定是二分图
相邻的点->二分图的两个部分
会发现我们正是要找这个树的二分图最大匹配数
二分图的最大匹配数=最小点覆盖.
树的最小点覆盖是可以用O(N)的动规写出来的
然后就知道有多少条边是可以一条边就凑两只猴子的了。
剩下的如果猴子不够的话,就只能用一条边了。
因为是两个两个地凑,奇数的话,那单独的一只只能额外加一条边了。
要用输入挂(fread)不然会超时。

【错的次数】


0

【反思】


树肯定是二分图。
相邻点对->二分图匹配。
二分图匹配->点覆盖。

【代码】

/*

*/
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#include <iomanip>
#include <set>
#include <cstdlib>
#include <cmath>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb emplace_back
#define fi first
#define se second
#define ld long double
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x)
#define rf(x) scnaf("%lf",&x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
#define sz(x) ((int) x.size())
#define ld long double typedef pair<int, int> pii;
typedef pair<LL, LL> pll; //mt19937 myrand(time(0));
//int get_rand(int n){return myrand()%n + 1;}
const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 1e5; namespace IO {
const int MX = 4e7;//随输入量改变
char buf[MX]; int c, sz;
void begin() {
c = 0;
sz = fread(buf, 1, MX, stdin);
}
inline bool read(int &t) {
while (c < sz && buf[c] != '-' && (buf[c] < '0' || buf[c] > '9')) c++;
if (c >= sz) return false;
bool flag = 0; if (buf[c] == '-') flag = 1, c++;
for (t = 0; c < sz && '0' <= buf[c] && buf[c] <= '9'; c++) t = t * 10 + buf[c] - '0';
if (flag) t = -t;
return true;
}
} int n, k,dp1[N+10],dp2[N+10];//放 不放
vector <int> g[N + 10]; void dfs(int x) {
dp1[x] = 1,dp2[x] = 0;
int len = g[x].size();
rep1(i,0,len-1){
int y = g[x][i];
dfs(y);
dp1[x]+=min(dp1[y],dp2[y]);
dp2[x]+=dp1[y];
}
} int main() {
//Open();
//Close();
int T;
IO::begin();
IO::read(T);
while (T--) {
IO::read(n), IO::read(k);
rep1(i,1,n) g[i].clear();
rep1(i, 1, n - 1) {
int x;
IO::read(x);
g[x].pb(i+1);
}
dfs(1);
int dui = min(dp1[1],dp2[1]);
int flag = k&1;
k/=2;
if (k <= dui){
oi(k + flag);puts("");
}else{
//k>dui
oi(dui + k*2 - dui*2 + flag);puts("");
}
}
return 0;
}

【2017 Multi-University Training Contest - Team 10 】Monkeys的更多相关文章

  1. 【2017 Multi-University Training Contest - Team 10】Schedule

    [链接]http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1010&cid=767 [题意] 给一些区间,每台机器在这些区间 ...

  2. 【2017 Multi-University Training Contest - Team 2】TrickGCD

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6053 [Description] 给你一个b数组,让你求一个a数组: 要求,该数组的每一位都小于等 ...

  3. 【2017 Multi-University Training Contest - Team 2】Maximum Sequence

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6047 [Description] 给你一个数列a和一个数列b; 只告诉你a的前n项各是什么; 然后 ...

  4. 【2017 Multi-University Training Contest - Team 2】 Regular polygon

    [Link]: [Description] 给你n个点整数点; 问你这n个点,能够组成多少个正多边形 [Solution] 整点只能构成正四边形. 则先把所有的边预处理出来; 枚举每某两条边为对角线的 ...

  5. 【2017 Multi-University Training Contest - Team 2】 Is Derek lying?

    [Link]: [Description] 两个人都做了完全一样的n道选择题,每道题都只有'A','B','C' 三个选项,,每道题答对的话得1分,答错不得分也不扣分,告诉你两个人全部n道题各自选的是 ...

  6. 【2017 Multi-University Training Contest - Team 4】Time To Get Up

    [Link]: [Description] [Solution] 把每个数字长什么样存到数组里就好;傻逼题. (直接输入每一行是什么样子更快,不要一个字符一个字符地输入) [NumberOf WA] ...

  7. 【2017 Multi-University Training Contest - Team 7】Hard challenge

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6127 [Description] 平面上有n个点,每个点有一个价值,每两个点之间都有一条线段,定义 ...

  8. 【2017 Multi-University Training Contest - Team 7】Kolakoski

    [Link]:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1011&cid=765 [Description] 有一种 ...

  9. 【2017 Multi-University Training Contest - Team 9】FFF at Valentine

    [链接]http://acm.hdu.edu.cn/showproblem.php?pid=6165 [题意] 一张有向图,n个点,m条边,保证没有重边和自环.询问任意两个点能否满足任何一方能够到达另 ...

随机推荐

  1. C/C++(C++类与对象)

    构造器(constructor) 1.与类名相同,无返回,被系统生成对象时自动调用,用于初始化. 2.可以有参数,构造器的重载,有默认参数.重载和默认参数不能同时出现,但是一定要包含标配(无参数的构造 ...

  2. perl编程问题

    一.Hash类型 1.hash遍历输出:如果hash遍历输出的时候不是按key则会按数组输出. my %hash=(); ${hash}{"a"}="1"; $ ...

  3. Django_高级扩展

  4. CCF模拟 无线网络

    无线网络 时间限制: 1.0s 内存限制: 256.0MB   问题描述 目前在一个很大的平面房间里有 n 个无线路由器,每个无线路由器都固定在某个点上.任何两个无线路由器只要距离不超过 r 就能互相 ...

  5. tsp问题——遗传算法解决

    TSP问题最简单的求解方法是枚举法. 它的解是多维的.多局部极值的.趋于无穷大的复杂解的空间.搜索空间是n个点的全部排列的集合.大小为(n-1)! .能够形象地把解空间看成是一个无穷大的丘陵地带,各山 ...

  6. OpenCASCADE解非线性方程组

    OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...

  7. ubuntu-删除内核

    今天进入公司第一天,公司需要给电脑安装ubuntu,这个是由it部门帮忙安装的.但是,我不小心升级了内核版本,接下来就悲剧了,因为内核版本升级以后,直接导致了环境错误,很多公司内部使用的工具都不能用了 ...

  8. Android Studio 解决unspecified on project app resolves to an APK archive which is not supported

    出现该问题unspecified on project app resolves to an APK archive which is not supported as a compilation d ...

  9. Netty系列之Netty编解码框架分析

    1. 背景 1.1. 编解码技术 通常我们也习惯将编码(Encode)称为序列化(serialization),它将对象序列化为字节数组,用于网络传输.数据持久化或者其它用途. 反之,解码(Decod ...

  10. ES6第三节:变量的解构赋值

    ES6允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构.下面我们看实际的例子: 一.数组解构: let [a,b,c] = [1,2,3]; console.log(a); //a ...