Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

    约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200)个田地上吃草.有P(1≤P≤1500)条双向路连接着这些田地.路很宽,无限量的牛可以通过.田地上有雨棚,雨棚有一定的容量,牛们可以瞬间从这块田地进入这块田地上的雨棚    请计算最少的时间,让每只牛都进入雨棚.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

    第1行:两个整数F和P;
    第2到F+1行:第i+l行有两个整数描述第i个田地,第一个表示田地上的牛数,第二个表示田地上的雨棚容量.两个整数都在0和1000之间.
    第F+2到F+P+I行:每行三个整数描述一条路,分别是起点终点,及通过这条路所需的时间(在1和10^9之间).

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

    一个整数,表示最少的时间.如果无法使牛们全部进入雨棚,输出-1.
 
题解: 预处理出任意两点间最短距离,每次二分一下时间,时间小于等于二分的时间就进行加边. 对于每一个牛群连接容量为牛数量的边,并从雨棚向终点连边,容量为雨棚容量. 如果达到漫流,则继续往小了二分,否则向更大二分. 
 
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 1000000
#define inf 10000000000000
#define ll long long
using namespace std;
namespace Dinic{
struct Edge{
int from,to,cap;
Edge(int u=0,int v=0,int c=0):from(u),to(v),cap(c){}
};
vector<int>G[500];
vector<Edge>edges;
queue<int>Q;
int vis[500],d[500],curr[500];
int s,t;
void addedge(int u,int v,int c){
edges.push_back(Edge(u,v,c)),edges.push_back(Edge(v,u,0));
int m=edges.size();
G[u].push_back(m-2),G[v].push_back(m-1);
}
int BFS(){
memset(vis,0,sizeof(vis));
d[s]=0,vis[s]=1, Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int sz=G[u].size(),i=0;i<sz;++i){
Edge r=edges[G[u][i]];
if(!vis[r.to]&&r.cap>0) {
vis[r.to]=1,d[r.to]=d[u]+1;
Q.push(r.to);
}
}
}
return vis[t];
}
int dfs(int x,int cur){
if(x==t) return cur;
int f,flow=0;
for(int sz=G[x].size(),i=curr[x];i<sz;++i){
curr[x]=i;
Edge r=edges[G[x][i]];
if(d[r.to]==d[x]+1&&r.cap>0){
f=dfs(r.to,min(cur,r.cap));
cur-=f,flow+=f,edges[G[x][i]].cap-=f,edges[G[x][i]^1].cap+=f;
}
if(cur<=0) break;
}
return flow;
}
int maxflow(){
int flow=0;
while(BFS()) memset(curr,0,sizeof(curr)),flow+=dfs(s,10000000);
return flow;
}
void re(){
for(int i=0;i<500;++i) G[i].clear();
edges.clear();
}
};
#define row1(i) (i)
#define row2(i) (i+n)
int C[maxn],num[maxn],sums=0,n;
long long d[500][500];
bool check(ll tmp)
{
Dinic::re();
int s=0,t=row2(n+1);
Dinic::s=s,Dinic::t=t;
for(int i=1;i<=n;++i)
{
if(num[i]) Dinic::addedge(s,row1(i),num[i]);
if(C[i]) Dinic::addedge(row2(i),t,C[i]);
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
if(i!=j && d[i][j]<=tmp) Dinic::addedge(row1(i), row2(j), 10000000);
}
return Dinic::maxflow() >= sums;
}
int main()
{
// setIO("input");
int m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d%d",&num[i],&C[i]),sums+=num[i];
for(int i=0;i<=230;++i)
for(int j=0;j<=230;++j) d[i][j]=inf;
for(int i=0;i<=230;++i) d[i][i]=0;
for(int i=1;i<=m;++i)
{
int u,v;
ll c;
scanf("%d%d%lld",&u,&v,&c);
if(u!=v) d[u][v]=d[v][u]=min(d[u][v],c);
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
ll l=0,r=100000000000000,ans=-1;
while(l<=r)
{
ll mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}

  

BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 网络流 + 二分 + Floyd的更多相关文章

  1. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )

    一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...

  2. BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    Description 约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间.    牛们在农场的F(1≤F≤200 ...

  3. bzoj 1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 最大流+二分

    题目要求所有牛都去避雨的最长时间最小. 显然需要二分 二分之后考虑如何判定. 显然每头牛都可以去某个地方 但是前提是最短路径<=mid. 依靠二分出来的东西建图.可以发现这是一个匹配问题 din ...

  4. BZOJ1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛

    先预处理出来每个点对之间的最短距离 然后二分答案,网络流判断是否可行就好了恩 /************************************************************ ...

  5. 【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流

    题目描述 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain m ...

  6. bzoj 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛【二分+贪心】

    二分答案,贪心判定 #include<iostream> #include<cstdio> #include<algorithm> using namespace ...

  7. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  8. BZOJ 1739: [Usaco2005 mar]Space Elevator 太空电梯

    题目 1739: [Usaco2005 mar]Space Elevator 太空电梯 Time Limit: 5 Sec  Memory Limit: 64 MB Description The c ...

  9. BZOJ 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛( 二分答案 )

    最小最大...又是经典的二分答案做法.. -------------------------------------------------------------------------- #inc ...

随机推荐

  1. 详解Pattern类和Matcher类

    java正则表达式通过java.util.regex包下的Pattern类与Matcher类实现(建议在阅读本文时,打开java API文档,当介绍到哪个方法时,查看java API中的方法说明,效果 ...

  2. CPU工作原理简图

  3. HDU 5392 BC #51

    就是求最大公倍数,但要用分解质因子求. 自己写的WA到爆.... #include<iostream> #include<stdio.h> #include<math.h ...

  4. 每一个程序猿必知之SEO

    似乎由于受这篇文章的影响 http://katemats.com/what-every-programmer-should-know-about-seo/ 于是我也觉得我应该写一个每一个程序猿必知之S ...

  5. NPM 3 Beta为Windows用户带来利好消息

    本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2015/06/angular-2-react-native-roadmap 近日,np ...

  6. 依据矩阵的二维相关系数进行OCR识别

    我想通过简单的模板匹配来进行图像识别. 把预处理好的字符图片,分别与A到Z的样本图片进行模板匹配. 结果最大的表明相关性最大,就能够识别字符图片了. 在实际应用中.我用了openCV的matchTem ...

  7. hibernate之关于一对一单向,双向关联映射

    [hibernate]之关于一对一单向,双向关联映射 首先我们来看,Hibernate官方对于一对一单向关联的解释: 基于外键关联的单向一对一关联和单向多对一关联差点儿是一样的. 唯一的不同就是单向一 ...

  8. cocos2d-html5开发之本地数据存储

    做游戏时常常须要的一个功能呢就是数据的保存了,比方游戏最高分.得到的金币数.物品的数量等等.cocos2d-html5使用了html5.所以html5的数据保存方法是对引擎可用的: html5本地数据 ...

  9. Fiddler手机抓包工具设置过滤域名

    需求:我想用fiddler抓包只抓test.sis.1course.cn; pre.schoolis.cn; sistest02.schoolis.cn;这几个域名下的请求 设置步骤:https:// ...

  10. win7下code::blocks开发环境

    一.环境配置步骤: 下载安装code::blocks; 下载安装MinGW; 在complier settings中, Toolchain executables选择MinGW的安装路径. 完成安装. ...