Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.

There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.

By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.

Plans on the website have three types:

  1. With a plan of this type you can open a portal from planet v to planet u.
  2. With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
  3. With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.

Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.

Input

The first line of input contains three integers nq and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.

The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers vu and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers vlr and wwhere w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).

Output

In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or  - 1 if it's impossible to get to that planet.

Examples
input

Copy
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
output

Copy
0 28 12 
input

Copy
4 3 1
3 4 1 3 12
2 2 3 4 10
1 2 4 16
output

Copy
0 -1 -1 12 
Note

In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.

建立两棵线段树,对树上结点进行建边;注意点是图的点数要开8倍,INF要开大。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
//#define INF 0x3f3f3f3f
#define ll long long
#define ull unsigned long long
#define lowbit(x) (x&(-x))
#define eps 0.00000001
#define PI acos(-1)
#define pn printf("\n");
using namespace std; int n,q,s;
const int maxn = 1e5+;
const int MAXN = maxn << ;
const ll INF = 1e18+;
int tol; // 单树结点数
int up[maxn << ], dn[maxn << ]; // 上面的树的编号, 下面的树的编号
int u, op;
int u_id[maxn]; // 下标为i的点在线段树中的编号
ll w; struct qnode
{
int v;
ll c;
qnode(int _v=,ll _c=):v(_v),c(_c){}
bool operator <(const qnode &r) const
{
return c > r.c;
}
};
struct Edge {
int v;
ll cost;
Edge(int _v=,ll _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
ll dist[MAXN]; void init()
{
tol = ;
memset(up, , sizeof up);
memset(dn, , sizeof dn);
for(int i=;i<MAXN;i++) E[i].clear();
tol = n*-;
} void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis, false, sizeof(vis));
for(int i=; i<=n; i++)
dist[i] = INF;
priority_queue <qnode> que;
while(!que.empty()) que.pop();
dist[start] = ;
que.push(qnode(start, ));
qnode tmp;
while(!que.empty())
{
tmp = que.top();
que.pop();
int u = tmp.v;
if(vis[u]) continue;
vis[u] = true;
for(int i=; i<E[u].size(); i++)
{
int v = E[tmp.v][i].v;
ll cost = E[u][i].cost;
if(!vis[v] && dist[v] > dist[u]+cost)
{
dist[v] = dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
} void addedge(int u, int v, ll w)
{
E[u].push_back(Edge(v,w)); //cout << u << " -> " << v << " : " << w << endl;
} void build(int i,int b,int e,int pos, int *t)
{
if(b == e)
{
t[i] = i;
u_id[pos] = i;
return ;
} int mid = (b + e) / ;
if(pos <= mid) build(i << , b, mid, pos, t);
else build(i << | , mid + , e, pos, t); t[i] = i;
} void update(int i, int b, int e, int l, int r, bool mode)// mode=0: 点到区间, 1: 区间到点
{
if(b >= l && e <= r)
{
if(mode)
{
addedge(up[i], u_id[u]+tol, w); // 上面的树的区间的编号 到 下面的树的点的编号 建边
}
else
{
addedge(u_id[u], dn[i], w); // 上面的树的点的编号 到 下面的树的区间的编号 建边
}
return ;
} int mid = (b + e) >> ;
if(r <= mid) update(i << , b, mid, l, r, mode);
else if(l > mid) update(i << | , mid+, e, l, r, mode);
else
{
update(i << , b, mid, l, r, mode);
update(i << | , mid+, e, l, r, mode);
}
} void build_edge()
{
int vis[MAXN] = {};
queue <int> que;
for(int i=;i<=n;i++)
{
que.push(u_id[i]);
addedge(u_id[i], u_id[i] + tol, );
addedge(u_id[i] + tol, u_id[i], ); // 点到点建双向边
}
while(!que.empty())
{
int u = que.front();
que.pop(); addedge(u, u >> , ); // 从下到上建单向边
addedge( (u>>) + tol, u+tol, ); // 从上到下建单向边
if( (u>>) > && !vis[u>>] )
{
vis[u>>] = ;
que.push( u>> ); // 结点上移
}
}
} int main()
{
while(~scanf("%d%d%d", &n,&q,&s))
{
init();
int l, r;
for(int i=;i<=n;i++)
build(, , n, i, up); // 对上面的树的节点赋值
for(int i=;i<=tol;i++)
dn[i] = up[i] + tol; // 下面的树的节点的值 赋为 上面的树对应的点+tol
build_edge(); // 分别建从下到上、从上到下的单向边;点对点的双向边 while(q--)
{
scanf("%d", &op);
if(op == ) // 点到点建边
{
int v;
scanf("%d%d%lld", &u, &v, &w);
addedge(u_id[u], u_id[v]+tol, w); // 从上面的树的叶子结点指到下面树叶子结点
}
else if(op == ) // 点到区间
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
else // 区间到点
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
} Dijkstra(tol<<, u_id[s]); // 总点数:两个线段树的节点数*2, 起点:下标为s的点在上面的树中的编号
for(int i=;i<=n;i++)
{
if(i > ) printf(" ");
printf("%lld", dist[u_id[i] + tol] == INF ? - : dist[u_id[i] + tol] );
} pn;
}
}

Codeforces Round #406 (Div. 2) 787-D. Legacy的更多相关文章

  1. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  2. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  3. Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  5. 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E

    http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...

  6. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  7. 有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C

    http://codeforces.com/contest/787/problem/C 题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球.已知在星球上(不含第一个黑洞)有一位神.有两个人, ...

  8. Codeforces Round #406 (Div. 1)

    B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...

  9. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

随机推荐

  1. Clojure:ZeroMQ的入门DEMO

    假设你已经知道什么是ZeroMQ(不知道的话可以看这个:http://zh.wikipedia.org/wiki/%C3%98MQ),以下就给出在Clojure中如何使用ZeroMQ(感谢此文作者:h ...

  2. UVA 10891 区间DP+博弈思想

    很明显带有博弈的味道.让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大.而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j.结合博弈中的思想,表示初始状态 ...

  3. Oracle推断值为非数字

    select * from product_info t where t.contract_detailid is not null and length(translate(t.contract_d ...

  4. 迅为4412开发板Linux驱动教程/硬件知识及原理图的使用

    视频教程下载地址:http://pan.baidu.com/s/1pJwxUfL 嵌入式研发流程介绍 • PCB研发流程介绍 – 方案,原理图(网表) – layoutproject师(gerber文 ...

  5. C++源码实现:21种常用设计模式

    C++源码实现:21种常用设计模式一直以来在设计模式的学习中,都是出现java的源码,这对学习C++的极度不友好.本工程是基于C++实现21种常用的设计模式,里面包含了实例代码和示例.编写的时候在学习 ...

  6. 使用SetTimer函数为Delphi的Win控件设置时钟

    procedure Timertodo(var messag:Tmessage);message WM_TIMER; procedure TForm1.FormCreate(Sender: TObje ...

  7. Java 判断中文字符

    Java判断一个字符串中是否有中文字符有两种方法,但是原理都一样,就是通过Unicode编码来判断,因为中文在Unicode中的编码区间为:0x4e00--0x9fa5 第一种: String chi ...

  8. Linux下使用popen()执行shell命令【转】

    本文转载自:https://my.oschina.net/u/727148/blog/262987 函数原型: #include “stdio.h” FILE popen( const char co ...

  9. Codeforces--626B--Cards(模拟)

     Cards Time Limit: 2000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Sta ...

  10. Python 37 进程池与线程池 、 协程

    一:进程池与线程池 提交任务的两种方式: 1.同步调用:提交完一个任务之后,就在原地等待,等任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行 2.异步调用:提交完一个任务之后, ...