Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.

There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.

By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.

Plans on the website have three types:

  1. With a plan of this type you can open a portal from planet v to planet u.
  2. With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
  3. With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.

Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.

Input

The first line of input contains three integers nq and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.

The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers vu and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers vlr and wwhere w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).

Output

In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or  - 1 if it's impossible to get to that planet.

Examples
input

Copy
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
output

Copy
0 28 12 
input

Copy
4 3 1
3 4 1 3 12
2 2 3 4 10
1 2 4 16
output

Copy
0 -1 -1 12 
Note

In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.

建立两棵线段树,对树上结点进行建边;注意点是图的点数要开8倍,INF要开大。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
//#define INF 0x3f3f3f3f
#define ll long long
#define ull unsigned long long
#define lowbit(x) (x&(-x))
#define eps 0.00000001
#define PI acos(-1)
#define pn printf("\n");
using namespace std; int n,q,s;
const int maxn = 1e5+;
const int MAXN = maxn << ;
const ll INF = 1e18+;
int tol; // 单树结点数
int up[maxn << ], dn[maxn << ]; // 上面的树的编号, 下面的树的编号
int u, op;
int u_id[maxn]; // 下标为i的点在线段树中的编号
ll w; struct qnode
{
int v;
ll c;
qnode(int _v=,ll _c=):v(_v),c(_c){}
bool operator <(const qnode &r) const
{
return c > r.c;
}
};
struct Edge {
int v;
ll cost;
Edge(int _v=,ll _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
ll dist[MAXN]; void init()
{
tol = ;
memset(up, , sizeof up);
memset(dn, , sizeof dn);
for(int i=;i<MAXN;i++) E[i].clear();
tol = n*-;
} void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis, false, sizeof(vis));
for(int i=; i<=n; i++)
dist[i] = INF;
priority_queue <qnode> que;
while(!que.empty()) que.pop();
dist[start] = ;
que.push(qnode(start, ));
qnode tmp;
while(!que.empty())
{
tmp = que.top();
que.pop();
int u = tmp.v;
if(vis[u]) continue;
vis[u] = true;
for(int i=; i<E[u].size(); i++)
{
int v = E[tmp.v][i].v;
ll cost = E[u][i].cost;
if(!vis[v] && dist[v] > dist[u]+cost)
{
dist[v] = dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
} void addedge(int u, int v, ll w)
{
E[u].push_back(Edge(v,w)); //cout << u << " -> " << v << " : " << w << endl;
} void build(int i,int b,int e,int pos, int *t)
{
if(b == e)
{
t[i] = i;
u_id[pos] = i;
return ;
} int mid = (b + e) / ;
if(pos <= mid) build(i << , b, mid, pos, t);
else build(i << | , mid + , e, pos, t); t[i] = i;
} void update(int i, int b, int e, int l, int r, bool mode)// mode=0: 点到区间, 1: 区间到点
{
if(b >= l && e <= r)
{
if(mode)
{
addedge(up[i], u_id[u]+tol, w); // 上面的树的区间的编号 到 下面的树的点的编号 建边
}
else
{
addedge(u_id[u], dn[i], w); // 上面的树的点的编号 到 下面的树的区间的编号 建边
}
return ;
} int mid = (b + e) >> ;
if(r <= mid) update(i << , b, mid, l, r, mode);
else if(l > mid) update(i << | , mid+, e, l, r, mode);
else
{
update(i << , b, mid, l, r, mode);
update(i << | , mid+, e, l, r, mode);
}
} void build_edge()
{
int vis[MAXN] = {};
queue <int> que;
for(int i=;i<=n;i++)
{
que.push(u_id[i]);
addedge(u_id[i], u_id[i] + tol, );
addedge(u_id[i] + tol, u_id[i], ); // 点到点建双向边
}
while(!que.empty())
{
int u = que.front();
que.pop(); addedge(u, u >> , ); // 从下到上建单向边
addedge( (u>>) + tol, u+tol, ); // 从上到下建单向边
if( (u>>) > && !vis[u>>] )
{
vis[u>>] = ;
que.push( u>> ); // 结点上移
}
}
} int main()
{
while(~scanf("%d%d%d", &n,&q,&s))
{
init();
int l, r;
for(int i=;i<=n;i++)
build(, , n, i, up); // 对上面的树的节点赋值
for(int i=;i<=tol;i++)
dn[i] = up[i] + tol; // 下面的树的节点的值 赋为 上面的树对应的点+tol
build_edge(); // 分别建从下到上、从上到下的单向边;点对点的双向边 while(q--)
{
scanf("%d", &op);
if(op == ) // 点到点建边
{
int v;
scanf("%d%d%lld", &u, &v, &w);
addedge(u_id[u], u_id[v]+tol, w); // 从上面的树的叶子结点指到下面树叶子结点
}
else if(op == ) // 点到区间
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
else // 区间到点
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
} Dijkstra(tol<<, u_id[s]); // 总点数:两个线段树的节点数*2, 起点:下标为s的点在上面的树中的编号
for(int i=;i<=n;i++)
{
if(i > ) printf(" ");
printf("%lld", dist[u_id[i] + tol] == INF ? - : dist[u_id[i] + tol] );
} pn;
}
}

Codeforces Round #406 (Div. 2) 787-D. Legacy的更多相关文章

  1. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  2. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  3. Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  5. 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E

    http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...

  6. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  7. 有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C

    http://codeforces.com/contest/787/problem/C 题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球.已知在星球上(不含第一个黑洞)有一位神.有两个人, ...

  8. Codeforces Round #406 (Div. 1)

    B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...

  9. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

随机推荐

  1. 【转】shell中的内建命令, 函数和外部命令

    原文:http://www.cnblogs.com/xkfz007/archive/2011/10/13/2209571.html linux命令有内部命令和外部命令之分.内部命令实际上是shell程 ...

  2. php导入sql文件

    php导入sql文件 sql php php导入sql文件 基本思路 1.打开sql文件,放入一个变量(字符串类型)其中 2.使用正则替换掉其中的凝视("--"与"/** ...

  3. SQL Server高速导入数据分享

    SQL Server高速导入数据,能够尝试的方法例如以下:CTE.OpenRowSet/OpenDataSource.BULK INSERT.bcp.Shell. 以下依次介绍这几种办法. 1.CTE ...

  4. 数据结构(C实现)------- 顺序栈

    栈是限定仅在表的一端进行插入或删除的纯属表,通常称同意插入.删除的一端为栈顶(Top),对应在的.则称还有一端为栈底(Bottom). 不含元素的栈则称为空栈. 所设栈S={a1,a2,a3,..., ...

  5. Choose the best route HDU杭电2680【dijkstra算法 || SPFA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Problem Description One day , Kiki wants to visit one ...

  6. luogu2157 [SDOI2009]学校食堂 局部状压

    题目大意 小F 的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭.学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满意的菜肴.当然,不同的人口味也不一定相同,但每个人的口味都可以用一个非负整数 ...

  7. Android入门之文件系统操作(二)文件操作相关指令

    (一)获取总根 File[] fileList=File.listRoots(); //返回fileList.length为1 //fileList.getAbsolutePath()为"/ ...

  8. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  9. UESTC--1252--24点游戏(dfs)

     24点游戏 Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format: %lld & %llu Submit Status ...

  10. 迭代,IDA*

    1.codevs1288 题意:对于一个分数a/b(a!=1),将它表示为1/x + 1/y + 1/z ……的形式,x,y,z……互不相同 多解取加数少的,加数相同时,取最小的分数最大的. 思路:经 ...