Codeforces Round #406 (Div. 2) 787-D. Legacy
Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So Rick wants to give his legacy to Morty before bad guys catch them.
There are n planets in their universe numbered from 1 to n. Rick is in planet number s (the earth) and he doesn't know where Morty is. As we all know, Rick owns a portal gun. With this gun he can open one-way portal from a planet he is in to any other planet (including that planet). But there are limits on this gun because he's still using its free trial.
By default he can not open any portal by this gun. There are q plans in the website that sells these guns. Every time you purchase a plan you can only use it once but you can purchase it again if you want to use it more.
Plans on the website have three types:
- With a plan of this type you can open a portal from planet v to planet u.
- With a plan of this type you can open a portal from planet v to any planet with index in range [l, r].
- With a plan of this type you can open a portal from any planet with index in range [l, r] to planet v.
Rick doesn't known where Morty is, but Unity is going to inform him and he wants to be prepared for when he finds and start his journey immediately. So for each planet (including earth itself) he wants to know the minimum amount of money he needs to get from earth to that planet.
The first line of input contains three integers n, q and s (1 ≤ n, q ≤ 105, 1 ≤ s ≤ n) — number of planets, number of plans and index of earth respectively.
The next q lines contain the plans. Each line starts with a number t, type of that plan (1 ≤ t ≤ 3). If t = 1 then it is followed by three integers v, u and w where w is the cost of that plan (1 ≤ v, u ≤ n, 1 ≤ w ≤ 109). Otherwise it is followed by four integers v, l, r and wwhere w is the cost of that plan (1 ≤ v ≤ n, 1 ≤ l ≤ r ≤ n, 1 ≤ w ≤ 109).
In the first and only line of output print n integers separated by spaces. i-th of them should be minimum money to get from earth to i-th planet, or - 1 if it's impossible to get to that planet.
3 5 1
2 3 2 3 17
2 3 2 2 16
2 2 2 3 3
3 3 1 1 12
1 3 3 17
0 28 12
4 3 1
3 4 1 3 12
2 2 3 4 10
1 2 4 16
0 -1 -1 12
In the first sample testcase, Rick can purchase 4th plan once and then 2nd plan in order to get to get to planet number 2.
建立两棵线段树,对树上结点进行建边;注意点是图的点数要开8倍,INF要开大。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
//#define INF 0x3f3f3f3f
#define ll long long
#define ull unsigned long long
#define lowbit(x) (x&(-x))
#define eps 0.00000001
#define PI acos(-1)
#define pn printf("\n");
using namespace std; int n,q,s;
const int maxn = 1e5+;
const int MAXN = maxn << ;
const ll INF = 1e18+;
int tol; // 单树结点数
int up[maxn << ], dn[maxn << ]; // 上面的树的编号, 下面的树的编号
int u, op;
int u_id[maxn]; // 下标为i的点在线段树中的编号
ll w; struct qnode
{
int v;
ll c;
qnode(int _v=,ll _c=):v(_v),c(_c){}
bool operator <(const qnode &r) const
{
return c > r.c;
}
};
struct Edge {
int v;
ll cost;
Edge(int _v=,ll _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
ll dist[MAXN]; void init()
{
tol = ;
memset(up, , sizeof up);
memset(dn, , sizeof dn);
for(int i=;i<MAXN;i++) E[i].clear();
tol = n*-;
} void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis, false, sizeof(vis));
for(int i=; i<=n; i++)
dist[i] = INF;
priority_queue <qnode> que;
while(!que.empty()) que.pop();
dist[start] = ;
que.push(qnode(start, ));
qnode tmp;
while(!que.empty())
{
tmp = que.top();
que.pop();
int u = tmp.v;
if(vis[u]) continue;
vis[u] = true;
for(int i=; i<E[u].size(); i++)
{
int v = E[tmp.v][i].v;
ll cost = E[u][i].cost;
if(!vis[v] && dist[v] > dist[u]+cost)
{
dist[v] = dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
} void addedge(int u, int v, ll w)
{
E[u].push_back(Edge(v,w)); //cout << u << " -> " << v << " : " << w << endl;
} void build(int i,int b,int e,int pos, int *t)
{
if(b == e)
{
t[i] = i;
u_id[pos] = i;
return ;
} int mid = (b + e) / ;
if(pos <= mid) build(i << , b, mid, pos, t);
else build(i << | , mid + , e, pos, t); t[i] = i;
} void update(int i, int b, int e, int l, int r, bool mode)// mode=0: 点到区间, 1: 区间到点
{
if(b >= l && e <= r)
{
if(mode)
{
addedge(up[i], u_id[u]+tol, w); // 上面的树的区间的编号 到 下面的树的点的编号 建边
}
else
{
addedge(u_id[u], dn[i], w); // 上面的树的点的编号 到 下面的树的区间的编号 建边
}
return ;
} int mid = (b + e) >> ;
if(r <= mid) update(i << , b, mid, l, r, mode);
else if(l > mid) update(i << | , mid+, e, l, r, mode);
else
{
update(i << , b, mid, l, r, mode);
update(i << | , mid+, e, l, r, mode);
}
} void build_edge()
{
int vis[MAXN] = {};
queue <int> que;
for(int i=;i<=n;i++)
{
que.push(u_id[i]);
addedge(u_id[i], u_id[i] + tol, );
addedge(u_id[i] + tol, u_id[i], ); // 点到点建双向边
}
while(!que.empty())
{
int u = que.front();
que.pop(); addedge(u, u >> , ); // 从下到上建单向边
addedge( (u>>) + tol, u+tol, ); // 从上到下建单向边
if( (u>>) > && !vis[u>>] )
{
vis[u>>] = ;
que.push( u>> ); // 结点上移
}
}
} int main()
{
while(~scanf("%d%d%d", &n,&q,&s))
{
init();
int l, r;
for(int i=;i<=n;i++)
build(, , n, i, up); // 对上面的树的节点赋值
for(int i=;i<=tol;i++)
dn[i] = up[i] + tol; // 下面的树的节点的值 赋为 上面的树对应的点+tol
build_edge(); // 分别建从下到上、从上到下的单向边;点对点的双向边 while(q--)
{
scanf("%d", &op);
if(op == ) // 点到点建边
{
int v;
scanf("%d%d%lld", &u, &v, &w);
addedge(u_id[u], u_id[v]+tol, w); // 从上面的树的叶子结点指到下面树叶子结点
}
else if(op == ) // 点到区间
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
else // 区间到点
{
scanf("%d%d%d%lld", &u, &l, &r, &w);
update(, , n, l, r, );
}
} Dijkstra(tol<<, u_id[s]); // 总点数:两个线段树的节点数*2, 起点:下标为s的点在上面的树中的编号
for(int i=;i<=n;i++)
{
if(i > ) printf(" ");
printf("%lld", dist[u_id[i] + tol] == INF ? - : dist[u_id[i] + tol] );
} pn;
}
}
Codeforces Round #406 (Div. 2) 787-D. Legacy的更多相关文章
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E
http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...
- 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D
http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...
- 有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C
http://codeforces.com/contest/787/problem/C 题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球.已知在星球上(不含第一个黑洞)有一位神.有两个人, ...
- Codeforces Round #406 (Div. 1)
B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...
- Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索
A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...
随机推荐
- 淘宝信海龙 --PHP系统
https://yq.aliyun.com/users/1467229535950742?spm=5176.100239.blogrightarea56002.3.RoToxZ
- HTML5:判断浏览器是否支持date类型
在某些情况下,我们需要判断当前浏览器是否支持date类型,如果支持的话,可以让用户用原生的datepicker来选取日期.如果不支持,则我们需要用自己实现的datepicker类库,来提供给用户. 在 ...
- CF #323 DIV2 D题
可以知道,当T较大时,对于LIS,肯定会有很长的一部分是重复的,而这重复的部分,只能是一个block中出现次数最多的数字组成一序列.所以,对于T>1000时,可以直接求出LIS,剩下T-=100 ...
- [PWA] Show Notifications when a Service Worker is Installed or Updated
Service Workers get installed and activated in the background, but until we reload the page they don ...
- 创建hive整合hbase的表总结
[Author]: kwu 创建hive整合hbase的表总结.例如以下两种方式: 1.创建hive表的同步创建hbase的表 CREATE TABLE stage.hbase_news_compan ...
- 组合数们&&错排&&容斥原理
最近做了不少的组合数的题这里简单总结一下下 1.n,m很大p很小 且p为素数p要1e7以下的 可以接受On的时间和空间然后预处理阶乘 Lucas定理来做以下是代码 /*Hdu3037 Saving B ...
- hdu 2602(经典01背包)
Bone Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- A Reusable Aspect for Memory Allocation Checking
The checking logic would be refactored into an aspect file, as follows: after(void * s) : (call($ ma ...
- (Go)05.基本数据类型和操作符
保留的关键字段 1.Question1 package main import ( "fmt" ) func list(n int) { ; i <= n; i++ { fm ...
- SpringMVC中url映射到Controller
SpringMVC也是一种基于请求驱动的WEB框架,并且使用了前端控制器的设计模式.前端控制器就是DispatcherServlet控制器,只要满足web.xml文件中的[url-pattern]的规 ...