洛谷 P1275 魔板
题目描述
有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格。每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗)。我们可以通过若干操作使魔板从一个状态改变为另一个状态。操作的方式有两种:
(1)任选一行,改变该行中所有灯泡的状态,即亮的变暗、暗的变亮;
(2)任选两列,交换其位置。
当然并不是任意的两种状态都可以通过若干操作来实现互相转化的。
你的任务就是根据给定两个魔板状态,判断两个状态能否互相转化。
输入输出格式
输入格式:
文件中包含多组数据。第一行一个整数k,表示有k组数据。
每组数据的第一行两个整数n和m。(0<n,m≤100)
以下的n行描述第一个魔板。每行有m个数字(0或1),中间用空格分隔。若第x行的第y个数字为0,则表示魔板的第x行y列的灯泡为“亮”;否则为“暗”。
然后的n行描述第二个魔板。数据格式同上。
任意两组数据间没有空行。
输出格式:
共k行,依次描述每一组数据的结果。
若两个魔板可以相互转化,则输出YES,否则输出NO。(注意:请使用大写字母)
输入输出样例
2
3 4
0 1 0 1
1 0 0 1
0 0 0 0
0 1 0 1
1 1 0 0
0 0 0 0
2 2
0 0
0 1
1 1
1 1
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int k,n,m,flag,num;
int sum1[],sum2[];
bool vised[];
int ed[][],be[][],map[][];
int main(){
scanf("%d",&k);
while(k--){
flag=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&map[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&ed[i][j]);
for(int k=;k<=m;k++){
memset(vised,,sizeof(vised));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
be[i][j]=map[i][j];
for(int i=;i<=n;i++)
if(be[i][k]!=ed[i][])
for(int j=;j<=m;j++)
be[i][j]=!be[i][j];
vised[]=;num=;
for(int i=;i<=m;i++)
if(i!=k)
for(int j=;j<=m;j++)
if(!vised[j]){
int ok=;
for(int k=;k<=n;k++)
if(ed[k][j]!=be[k][i]){
ok=;
break;
}
if(ok) continue;
else vised[j]=,num++;
}
if(num==m){
cout<<"YES"<<endl;
flag=;break;
}
}
if(!flag) cout<<"NO"<<endl;
}
}
洛谷 P1275 魔板的更多相关文章
- 洛谷P1275 魔板
P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- 洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 洛谷 - P2730 - 魔板 Magic Squares - bfs
写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...
- 【题解】魔板—洛谷P1275。
话说好久没更博了. 最近学了好多知识懒的加进来了. 有幸认识一位大佬. 让我有了继续更博的兴趣. 但这是一个旧的题解. 我在某谷上早就发过的. 拿过来直接用就当回归了吧. 其实这道题有一个特别关键的思 ...
- 【洛谷】P1275 魔板(暴力&思维)
题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状态.操作的方式有两 ...
- P1275 魔板
题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状态.操作的方式有两 ...
随机推荐
- 【RHEL7/CentOS7防火墙之firewall-cmd命令详解】
目录 Firewalld zone firewall-cmd 开始配置防火墙策略 总结 Redhat Enterprise Linux7已默认使用firewalld防火墙,其管理工具是firewall ...
- spring boot基础
1.ANT下面典型的项目层次结构.(1) src存放文件.(2) class存放编译后的文件.(3) lib存放第三方JAR包.(4) dist存放打包,发布以后的代码. 2.Source Folde ...
- 关于android的设备管理器-DevicePolicyManager(一)
在Andorid的设置->安全里面有个设备管理器的选项,相信大部分android用户都不太会去注意这个东西.近期在安装了一个应用之后发现这个里面的东西变了.怎么回事呢,研究研究看看.</s ...
- POJ 2084
第一题组合数学题.可以使用递推,设1与其他各数分别连边,假设N=3;若1-4,则圆分成两部分计数,此时可以利用乘法原理.(高精度) #include <cstdio> #include & ...
- hdu4927 Series 1(组合+公式 Java大数高精度运算)
题目链接: Series 1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) ...
- Eureka Server添加用户认证
Eureka Server添加用户认证 学习了:http://blog.csdn.net/liuchuanhong1/article/details/54729556 注意:1,需要使用 defaul ...
- java基础之get和post的差别
上篇博文讲到HTTP协议,本篇介绍HTTP请求方法中get和post的差别: 首先,最明显的一点表象上的差别:GET 方式.将请求參数附加在url之后,POST将请求參数附加在请求头的最后 以下具体说 ...
- 实现 jstl标签foreach 功能
jsp 页面 <%@ page language="java" contentType="text/html; charset=UTF-8" pageEn ...
- python部分
读取骨骼数据相关的多个json,拼接到一起 # -- coding: utf-8 -- import os path = "./test" #文件夹目录 files= os.lis ...
- nyoj--37--回文字符串(动态规划)
回文字符串 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba".当然, ...