MATLAB曲线拟合
转自原文 MATLAB曲线拟合
曲线拟合
实例:温度曲线问题
气象部门观测到一天某些时刻的温度变化数据为:
|
t |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
T |
13 |
15 |
17 |
14 |
16 |
19 |
26 |
24 |
26 |
27 |
29 |
试描绘出温度变化曲线。
曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。
曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。
1.线性拟合函数:regress()
调用格式: b=regress(y,X)
[b,bint,r,rint,stats]= regress(y,X)
[b,bint,r,rint,stats]= regress(y,X,alpha)
说明:b=regress(y,X)返回X与y的最小二乘拟合值,及线性模型的参数值β、ε。该函数求解线性模型:
y=Xβ+ε
β是p´1的参数向量;ε是服从标准正态分布的随机干扰的n´1的向量;y为n´1的向量;X为n´p矩阵。
bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。
例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε ;求线性拟合方程系数。
程序: x=[ones(10,1) (1:10)'];
y=x*[10;1]+normrnd(0,0.1,10,1);
[b,bint]=regress(y,x,0.05)
结果: x =
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
y =
10.9567
11.8334
13.0125
14.0288
14.8854
16.1191
17.1189
17.9962
19.0327
20.0175
b =
9.9213
1.0143
bint =
9.7889 10.0537
0.9930 1.0357
即回归方程为:y=9.9213+1.0143x
2.多项式曲线拟合函数:polyfit( )
调用格式: p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)
说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval)
例2:由离散数据
|
x |
0 |
.1 |
.2 |
.3 |
.4 |
.5 |
.6 |
.7 |
.8 |
.9 |
1 |
|
y |
.3 |
.5 |
1 |
1.4 |
1.6 |
1.9 |
.6 |
.4 |
.8 |
1.5 |
2 |
拟合出多项式。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2];
n=3;
p=polyfit(x,y,n)
xi=linspace(0,1,100);
z=polyval(p,xi); %多项式求值
plot(x,y,'o',xi,z,'k:',x,y,'b')
legend('原始数据','3阶曲线')
结果:
p =
16.7832 -25.7459 10.9802 -0.0035
多项式为:16.7832x3-25.7459x2+10.9802x-0.0035
曲线拟合图形:
如果是n=6,则如下图:
也可由函数给出数据。
例3:x=1:20,y=x+3*sin(x)
程序:
x=1:20;
y=x+3*sin(x);
p=polyfit(x,y,6)
xi=linspace(1,20,100);
z=polyval(p,xi); %多项式求值函数
plot(x,y,'o',xi,z,'k:',x,y,'b')
legend('原始数据','6阶曲线')
结果:
p =
0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
再用10阶多项式拟合
程序:x=1:20;
y=x+3*sin(x);
p=polyfit(x,y,10)
xi=linspace(1,20,100);
z=polyval(p,xi);
plot(x,y,'o',xi,z,'k:',x,y,'b')
legend('原始数据','10阶多项式')
结果:p =
Columns 1 through 7
0.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360
Columns 8 through 11
-42.0861 88.5907 -92.8155 40.2671
可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。
3. 多项式曲线求值函数:polyval( )
调用格式: y=polyval(p,x)
[y,DELTA]=polyval(p,x,s)
说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。
[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。
4. 多项式曲线拟合的评价和置信区间函数:polyconf( )
调用格式: [Y,DELTA]=polyconf(p,x,s)
[Y,DELTA]=polyconf(p,x,s,alpha)
说明:[Y,DELTA]=polyconf(p,x,s)使用polyfit函数的选项输出s给出Y的95%置信区间Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。1-alpha为置信度。
例4:给出上面例1的预测值及置信度为90%的置信区间。
程序: x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]
n=3;
[p,s]=polyfit(x,y,n)
alpha=0.05;
[Y,DELTA]=polyconf(p,x,s,alpha)
结果:
p =
16.7832 -25.7459 10.9802 -0.0035
s =
R:
[4x4 double]
df: 7
normr: 1.1406
Y =
Columns 1 through 9
-0.0035
0.8538
1.2970
1.4266
1.3434
1.1480
0.9413
0.8238
0.8963
Columns 10 through 11
1.2594
2.0140
5.
稳健回归函数:robust( )
稳健回归是指此回归方法相对于其他回归方法而言,受异常值的影响较小。
调用格式:
b=robustfit(x,y)
[b,stats]=robustfit(x,y)
[b,stats]=robustfit(x,y,’wfun’,tune,’const’)
说明:b返回系数估计向量;stats返回各种参数估计;’wfun’指定一个加权函数;tune为调协常数;’const’的值为’on’(默认值)时添加一个常数项;为’off
’时忽略常数项。
例5:演示一个异常数据点如何影响最小二乘拟合值与稳健拟合。首先利用函数y=10-2x加上一些随机干扰的项生成数据集,然后改变一个y的值形成异常值。调用不同的拟合函数,通过图形观查影响程度。
程序:x=(1:10)’;
y=10-2*x+randn(10,1);
y(10)=0;
bls=regress(y,[ones(10,1) x]) %线性拟合
brob=robustfit(x,y) %稳健拟合
scatter(x,y)
hold on
plot(x,bls(1)+bls(2)*x,’:’)
plot(x,brob(1)+brob(2)*x,’r‘)
结果 : bls =
8.4452
-1.4784
brob =
10.2934
-2.0006
分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则受到异常值的影响,向异常值偏移。
6.
向自定义函数拟合
对于给定的数据,根据经验拟合为带有待定常数的自定义函数。
所用函数:nlinfit( )
调用格式:
[beta,r,J]=nlinfit(X,y,’fun’,betao)
说明:beta返回函数’fun’中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;‘fun’自定义函数;beta0待定常数初值。
例6:在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型:
现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。
x
y
x
y
x
y
8
0.49
16
0.43
28
0.41
8
0.49
18
0.46
28
0.40
10
0.48
18
0.45
30
0.40
10
0.47
20
0.42
30
0.40
10
0.48
20
0.42
30
0.38
10
0.47
20
0.43
32
0.41
12
0.46
20
0.41
32
0.40
12
0.46
22
0.41
34
0.40
12
0.45
22
0.40
36
0.41
12
0.43
24
0.42
36
0.36
14
0.45
24
0.40
38
0.40
14
0.43
24
0.40
38
0.40
14
0.43
26
0.41
40
0.36
16
0.44
26
0.40
42
0.39
16
0.43
26
0.41
首先定义非线性函数的m文件:fff6.m
function yy=model(beta0,x)
a=beta0(1);
b=beta0(2);
yy=a+(0.49-a)*exp(-b*(x-8));
程序:
x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00
14.00 14.00...
16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00
24.00...
24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00
32.00...
34.00 36.00 36.00 38.00 38.00 40.00 42.00]';
y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43
0.44 0.43...
0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40
0.41 0.41...
0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39
0.39]';
beta0=[0.30 0.02];
betafit = nlinfit(x,y,'sta67_1m',beta0)
结果:betafit =
0.3896
0.1011
即:a=0.3896 ,b=0.1011
MATLAB曲线拟合的更多相关文章
- [ZZ] MATLAB曲线拟合
MATLAB曲线拟合 http://blog.sina.com.cn/s/blog_5db2286f0100enlo.html MATLAB软件提供了基本的曲线拟合函数的命令: 多项式函数拟合: a ...
- 关于matlab曲线拟合的问题
matlab 曲线拟合工具箱,app->curve fitting 可以使用generate直接产生代码,生成的是函数 该函数直接返回的结果为cfit格式,直接读取不了,网上有网友说可以采用y ...
- matlab 曲线拟合小记
在matlab中经常需要对数据进行曲线拟合,如最常见的多项式拟合,一般可以通过cftool调用曲线拟合工具(curve fit tool),通过图形界面可以很方便的进行曲线拟合,但是有些时候也会遇到不 ...
- MATLAB曲线拟合函数
一.多项式拟合 ployfit(x,y,n) :找到次数为 n 的多项式系数,对于数据集合 {(x_i,y_i)},满足差的平方和最小 [P,E] = ployfit(x,y,n) :返回同上的多项式 ...
- matlab 曲线拟合
曲线拟合(转载:http://blog.sina.com.cn/s/blog_8e1548b80101c9iu.html) 补:拟合多项式输出为str 1.poly2str([p],'x') 2. f ...
- Matlab 曲线拟合之polyfit与polyval函数
p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p.x必须是单调的.矩阵s用于生成预测值的误差估 ...
- 基于MATLAB的多项式数据拟合方法研究-毕业论文
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...
- Matlab的曲线拟合工具箱CFtool使用简介
http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5 一. 单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ...
- Matlab: 白噪声与曲线拟合
在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍. 为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子: 用白噪声产生模拟信号: ...
随机推荐
- HDU 6149 Valley Numer II (状压DP 易错题)
题目大意:给你一个无向连通图(n<=30),点分为高点和低点,高点数量<=15,如果两个高点和低点都直接连边,那么我们称这三个点形成一个valley,每个点最多作为一个valley的组成部 ...
- 七、利用frp 穿透到内网的http/https网站,实现对外开放
有域名的话使用域名,没有域名的话使用IP注意80端口是否被已经安装使用的nginx占用,若被占用,可以换成其他端口,比如8080,,或者利用nginx的反向代理实现frp服务端与nginx共用80端口 ...
- MySQL主从宕机的解决方法
测试系统:centos6.5系统 测试环境IP地址划分: master: 192.168.80.130 slave:192.168.80.143 slave:192.168.80.146 首先模拟(M ...
- u-boot for tiny210 ver1.0(by liukun321咕唧咕唧)
新版本下载: 下面的链接提供了较新版本的源码 ver4.0源码下载:u-boot for tiny210 ver4.0 ver3.1源码下载: u-boot for tiny210 ver3.1 v ...
- Android S5PV210 fimc驱动分析 - fimc_capture.c
fimc_capture.c在FIMC系统中的位置,网上偷来的一幅图片 http://blog.csdn.net/kickxxx/article/details/7733482 43 static c ...
- STM32 IIC双机通信—— HAL库硬件IIC版
参考传送门 关于IIC的原理这里我就不多说了,网上有很多很好的解析,如果要看我个人对IIC的理解的话,可以点击查看,这里主要讲一下怎样利用STM32CubeMx实现IIC的通讯,经过个人实践,感觉HA ...
- Spring中使用Quartz之MethodInvokingJobDetailFactoryBean配置任务
Quartz是一个强大的企业级任务调度框架,Spring中继承并简化了Quartz. Spring中使用Quartz的3种方法(MethodInvokingJobDetailFactoryBean,i ...
- android:px,dp(dip),sp的差别
1.px:表示屏幕的实际像素,比如320*480的屏幕在横向有320个像素,在纵向有480个像素,假设指定的某个空间的单位为px.那么在不同分辨率下的手机上.显示的都是指定的大小.一般不推荐使用px. ...
- hdu 4544 湫湫系列故事——消灭兔子 优先队列+贪心
将兔子的血量从小到大排序,箭的威力也从小到大排序, 对于每仅仅兔子将威力大于血量的箭增加队列,写个优先队列使得出来数位价钱最少.. #include<stdio.h> #include&l ...
- Java 递归、尾递归、非递归 处理阶乘问题
n!=n*(n-1)! import java.io.BufferedReader; import java.io.InputStreamReader; /** * n的阶乘,即n! (n*(n-1) ...