转自原文 MATLAB曲线拟合

曲线拟合

实例:温度曲线问题

气象部门观测到一天某些时刻的温度变化数据为:

t

0

1

2

3

4

5

6

7

8

9

10

T

13

15

17

14

16

19

26

24

26

27

29

试描绘出温度变化曲线。

曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。

曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。

1.线性拟合函数:regress()

调用格式:  b=regress(y,X)

                     [b,bint,r,rint,stats]= regress(y,X)

                     [b,bint,r,rint,stats]= regress(y,X,alpha)

说明:b=regress(y,X)返回X与y的最小二乘拟合值,及线性模型的参数值β、ε。该函数求解线性模型:

y=Xβ+ε

β是p´1的参数向量;ε是服从标准正态分布的随机干扰的n´1的向量;y为n´1的向量;X为n´p矩阵。

bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。

例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε ;求线性拟合方程系数。

程序: x=[ones(10,1) (1:10)'];

      y=x*[10;1]+normrnd(0,0.1,10,1);

      [b,bint]=regress(y,x,0.05)

结果:  x =

     1     1

1     2

1     3

1     4

1     5

1     6

1     7

1     8

1     9

1    10

y =

10.9567

11.8334

13.0125

14.0288

14.8854

16.1191

17.1189

17.9962

19.0327

20.0175

b =

9.9213

1.0143

bint =

9.7889   10.0537

0.9930    1.0357

即回归方程为:y=9.9213+1.0143x

2.多项式曲线拟合函数:polyfit( )

调用格式:  p=polyfit(x,y,n)

                     [p,s]= polyfit(x,y,n)

说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval)

例2由离散数据

x

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

y

.3

.5

1

1.4

1.6

1.9

.6

.4

.8

1.5

2

拟合出多项式。

程序:

x=0:.1:1;

            y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2];

            n=3;

            p=polyfit(x,y,n)

            xi=linspace(0,1,100);

            z=polyval(p,xi); %多项式求值

            plot(x,y,'o',xi,z,'k:',x,y,'b')

            legend('原始数据','3阶曲线')

结果:

p =

16.7832  -25.7459   10.9802   -0.0035

多项式为:16.7832x3-25.7459x2+10.9802x-0.0035

曲线拟合图形:

如果是n=6,则如下图:

也可由函数给出数据。

例3x=1:20,y=x+3*sin(x)

程序:

x=1:20;

       y=x+3*sin(x);

       p=polyfit(x,y,6)

       xi=linspace(1,20,100);

       z=polyval(p,xi);     %多项式求值函数

plot(x,y,'o',xi,z,'k:',x,y,'b')

       legend('原始数据','6阶曲线')

结果:

p =

0.0000   -0.0021    0.0505   -0.5971    3.6472   -9.7295   11.3304

再用10阶多项式拟合

      程序:x=1:20;

y=x+3*sin(x);

p=polyfit(x,y,10)

xi=linspace(1,20,100);

z=polyval(p,xi);

plot(x,y,'o',xi,z,'k:',x,y,'b')

legend('原始数据','10阶多项式')

结果:p =

Columns 1 through 7

0.0000   -0.0000    0.0004   -0.0114    0.1814   -1.8065   11.2360

Columns 8 through 11

-42.0861   88.5907  -92.8155   40.2671

可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。

3.         多项式曲线求值函数:polyval( )

调用格式:  y=polyval(p,x)

                     [y,DELTA]=polyval(p,x,s)

说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。

4.         多项式曲线拟合的评价和置信区间函数:polyconf( )

调用格式:  [Y,DELTA]=polyconf(p,x,s)

                     [Y,DELTA]=polyconf(p,x,s,alpha)

说明:[Y,DELTA]=polyconf(p,x,s)使用polyfit函数的选项输出s给出Y的95%置信区间Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。1-alpha为置信度。

例4给出上面例1的预测值及置信度为90%的置信区间。

程序:   x=0:.1:1;

        y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]

        n=3;

        [p,s]=polyfit(x,y,n)

        alpha=0.05;

       [Y,DELTA]=polyconf(p,x,s,alpha)

       结果:  

p =

16.7832  -25.7459   10.9802   -0.0035

s =

R:
[4x4 double]
  df: 7
normr: 1.1406

Y =

Columns 1 through 9

-0.0035   
0.8538   
1.2970   
1.4266   
1.3434   
1.1480   
0.9413   
0.8238   
0.8963

Columns 10 through 11

1.2594   
2.0140

5.        
稳健回归函数:robust( )

稳健回归是指此回归方法相对于其他回归方法而言,受异常值的影响较小。

调用格式: 
b=robustfit(x,y)

                    
[b,stats]=robustfit(x,y)

                    
[b,stats]=robustfit(x,y,’wfun’,tune,’const’)

说明:b返回系数估计向量;stats返回各种参数估计;’wfun’指定一个加权函数;tune为调协常数;’const’的值为’on’(默认值)时添加一个常数项;为’off
’时忽略常数项。

例5演示一个异常数据点如何影响最小二乘拟合值与稳健拟合。首先利用函数y=10-2x加上一些随机干扰的项生成数据集,然后改变一个y的值形成异常值。调用不同的拟合函数,通过图形观查影响程度。

程序:x=(1:10)’;

y=10-2*x+randn(10,1);

y(10)=0;

bls=regress(y,[ones(10,1) x]) %线性拟合

brob=robustfit(x,y) %稳健拟合

scatter(x,y)

hold on

plot(x,bls(1)+bls(2)*x,’:’)

plot(x,brob(1)+brob(2)*x,’r‘)

结果 bls =

8.4452

-1.4784

brob =

10.2934

-2.0006

分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则受到异常值的影响,向异常值偏移。

6.        
向自定义函数拟合

对于给定的数据,根据经验拟合为带有待定常数的自定义函数。

所用函数:nlinfit( )

调用格式: 
[beta,r,J]=nlinfit(X,y,’fun’,betao)

说明:beta返回函数’fun’中的待定常数;r表示残差;J表示雅可比矩阵。X,y为数据;‘fun’自定义函数;beta0待定常数初值。

例6在化工生产中获得的氯气的级分y随生产时间x下降,假定在x≥8时,y与x之间有如下形式的非线性模型:

现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。

x           
y                  
x           
y                  
x           
y

8           
0.49              
16          
0.43              
28          
0.41

8           
0.49              
18          
0.46              
28          
0.40

10          
0.48              
18          
0.45              
30          
0.40

10          
0.47              
20          
0.42              
30          
0.40

10          
0.48              
20   
      
0.42              
30          
0.38

10          
0.47              
20          
0.43              
32          
0.41

12          
0.46              
20          
0.41              
32          
0.40

12          
0.46              
22          
0.41              
34          
0.40

12          
0.45              
22          
0.40              
36          
0.41

12          
0.43              
24          
0.42              
36          
0.36

14          
0.45              
24          
0.40              
38          
0.40

14          
0.43              
24          
0.40              
38          
0.40

14          
0.43              
26          
0.41              
40          
0.36

16          
0.44              
26          
0.40              
42          
0.39

16          
0.43              
26          
0.41

首先定义非线性函数的m文件:fff6.m

function yy=model(beta0,x)

a=beta0(1);

b=beta0(2);

yy=a+(0.49-a)*exp(-b*(x-8));

      
程序:

x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00
14.00 14.00... 

    
16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00
24.00...  

    
24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00
32.00...

    
34.00 36.00 36.00 38.00 38.00 40.00 42.00]';

  
y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43
0.44 0.43...

    
0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40
0.41 0.41...

    
0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39
0.39]';

    
beta0=[0.30 0.02];

betafit = nlinfit(x,y,'sta67_1m',beta0)

结果:betafit =

0.3896

0.1011

即:a=0.3896 ,b=0.1011

MATLAB曲线拟合的更多相关文章

  1. [ZZ] MATLAB曲线拟合

    MATLAB曲线拟合 http://blog.sina.com.cn/s/blog_5db2286f0100enlo.html MATLAB软件提供了基本的曲线拟合函数的命令: 多项式函数拟合:  a ...

  2. 关于matlab曲线拟合的问题

    matlab 曲线拟合工具箱,app->curve fitting 可以使用generate直接产生代码,生成的是函数 该函数直接返回的结果为cfit格式,直接读取不了,网上有网友说可以采用y ...

  3. matlab 曲线拟合小记

    在matlab中经常需要对数据进行曲线拟合,如最常见的多项式拟合,一般可以通过cftool调用曲线拟合工具(curve fit tool),通过图形界面可以很方便的进行曲线拟合,但是有些时候也会遇到不 ...

  4. MATLAB曲线拟合函数

    一.多项式拟合 ployfit(x,y,n) :找到次数为 n 的多项式系数,对于数据集合 {(x_i,y_i)},满足差的平方和最小 [P,E] = ployfit(x,y,n) :返回同上的多项式 ...

  5. matlab 曲线拟合

    曲线拟合(转载:http://blog.sina.com.cn/s/blog_8e1548b80101c9iu.html) 补:拟合多项式输出为str 1.poly2str([p],'x') 2. f ...

  6. Matlab 曲线拟合之polyfit与polyval函数

    p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p.x必须是单调的.矩阵s用于生成预测值的误差估 ...

  7. 基于MATLAB的多项式数据拟合方法研究-毕业论文

    摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...

  8. Matlab的曲线拟合工具箱CFtool使用简介

    http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5 一. 单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ...

  9. Matlab: 白噪声与曲线拟合

    在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍. 为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子: 用白噪声产生模拟信号: ...

随机推荐

  1. HDU 6149 Valley Numer II (状压DP 易错题)

    题目大意:给你一个无向连通图(n<=30),点分为高点和低点,高点数量<=15,如果两个高点和低点都直接连边,那么我们称这三个点形成一个valley,每个点最多作为一个valley的组成部 ...

  2. 七、利用frp 穿透到内网的http/https网站,实现对外开放

    有域名的话使用域名,没有域名的话使用IP注意80端口是否被已经安装使用的nginx占用,若被占用,可以换成其他端口,比如8080,,或者利用nginx的反向代理实现frp服务端与nginx共用80端口 ...

  3. MySQL主从宕机的解决方法

    测试系统:centos6.5系统 测试环境IP地址划分: master: 192.168.80.130 slave:192.168.80.143 slave:192.168.80.146 首先模拟(M ...

  4. u-boot for tiny210 ver1.0(by liukun321咕唧咕唧)

     新版本下载: 下面的链接提供了较新版本的源码 ver4.0源码下载:u-boot for tiny210 ver4.0 ver3.1源码下载: u-boot for tiny210 ver3.1 v ...

  5. Android S5PV210 fimc驱动分析 - fimc_capture.c

    fimc_capture.c在FIMC系统中的位置,网上偷来的一幅图片 http://blog.csdn.net/kickxxx/article/details/7733482 43 static c ...

  6. STM32 IIC双机通信—— HAL库硬件IIC版

    参考传送门 关于IIC的原理这里我就不多说了,网上有很多很好的解析,如果要看我个人对IIC的理解的话,可以点击查看,这里主要讲一下怎样利用STM32CubeMx实现IIC的通讯,经过个人实践,感觉HA ...

  7. Spring中使用Quartz之MethodInvokingJobDetailFactoryBean配置任务

    Quartz是一个强大的企业级任务调度框架,Spring中继承并简化了Quartz. Spring中使用Quartz的3种方法(MethodInvokingJobDetailFactoryBean,i ...

  8. android:px,dp(dip),sp的差别

    1.px:表示屏幕的实际像素,比如320*480的屏幕在横向有320个像素,在纵向有480个像素,假设指定的某个空间的单位为px.那么在不同分辨率下的手机上.显示的都是指定的大小.一般不推荐使用px. ...

  9. hdu 4544 湫湫系列故事——消灭兔子 优先队列+贪心

    将兔子的血量从小到大排序,箭的威力也从小到大排序, 对于每仅仅兔子将威力大于血量的箭增加队列,写个优先队列使得出来数位价钱最少.. #include<stdio.h> #include&l ...

  10. Java 递归、尾递归、非递归 处理阶乘问题

    n!=n*(n-1)! import java.io.BufferedReader; import java.io.InputStreamReader; /** * n的阶乘,即n! (n*(n-1) ...