DIY Cube

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)

Total Submission(s): 584    Accepted Submission(s): 284

Problem Description
Mr. D is interesting in combinatorial enumeration. Now he want to find out the number of ways on painting the vertexes of a cube. Suppose there are C different colors and two paintings are considered the same if they can transform from one to another by rotation.
 
Input
There are multiple test cases in the input, the first line of input contains an integer denoting the number of test cases.

For each test case, there are only one integer C, denoting the number of colors. (1 <= C <= 1000000000)
 
Output
For each test case, output the the number of painting ways. And if the number is equal or larger than 1015, output the last 15 digits.
 
Sample Input
3
1
2
112
 
Sample Output
Case 1: 1
Case 2: 23 Case 3: 031651434916928 /*
 * 题意:用n中颜色涂一个正方体的八个顶点,求有多少种方法。 假设得到的结果大于等于10^15,则输出后15位就可以。
思路:Ploya定理啊,是组合数学课本上的原题。相应于四种不同类型的旋转,1:不动,即恒等旋转有1个;2:绕三对对立面的中心旋转,有旋转90度,旋转180度,旋转270度,分别有3个;3:绕对边终点连线旋转,有6个。4:绕对角点旋转,有旋转120度和旋转240度,分别有4个。因此共同拥有24个对称。最后能够转化成公式(k^8 + 17*k^4 + 6 * k^2)/ 24 。
因为涉及到了大数,所以这道题我使用java写的,刚学java。 看着大神的分析,写了写试试。java单词好多。
 */
import java.util.*;
import java.math.*;
import java.math.BigInteger;
public class Main {
public static void main(String[] args){
int i,j;
BigInteger sum,k,temp;
temp= new BigInteger ("1000000000000000");
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for(i=1;i<=t;i++){
sum= BigInteger.ZERO;
k=in.nextBigInteger();
sum=sum.add(k.pow(8));
sum=sum.add(k.pow(4).multiply(BigInteger.valueOf(17)));
sum=sum.add(k.pow(2).multiply(BigInteger.valueOf(6)));
sum=sum.divide(BigInteger.valueOf(24));
System.out.print("Case "+i+": ");
if(sum.compareTo(temp) > 0){
sum= sum.mod(temp);
for(j=sum.toString().length(); j<15;j++){
System.out.print(0);
}
}
System.out.println(sum);
}
}
}

hdu 3547 DIY Cube (Ploya定理)的更多相关文章

  1. HDOJ 3547 DIY Cube 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3547 题目大意:求用$C$种颜色给立方体的8个顶点染色的本质不同的方法.两种方法本质不同即不能通过旋转 ...

  2. hdu 3547 (polya定理 + 小高精)

    DIY CubeTime Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. poj1286Necklace of Beads(ploya定理)

    链接 这个东东是新知识 let's 从头学起吧 这篇文库讲的不错 至少把各种概念学了一遍 然后再看此题 共有两种类型的置换 一种是旋转之后相同算一种 一种是翻转之后相同算一种 对于旋转 共有N次置换 ...

  4. Ploya定理学习笔记

    由于自己的作息极其不规律导致比赛被打爆了 但是有的时候状态其实还行. 关于Ploya定理其实特别有意思 这里粘一个[dalao的blog](https://blog.csdn.net/lyc16355 ...

  5. hdu 4651 Partition (利用五边形定理求解切割数)

    下面内容摘自维基百科: 五边形数定理[编辑] 五边形数定理是一个由欧拉发现的数学定理,描写叙述欧拉函数展开式的特性[1] [2].欧拉函数的展开式例如以下: 亦即 欧拉函数展开后,有些次方项被消去,仅 ...

  6. HDU 5292 Pocket Cube 结论题

    Pocket Cube 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5292 Description Pocket Cube is the 2×2× ...

  7. hdu 4704(费马小定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4704 思路:一道整数划分题目,不难推出公式:2^(n-1),根据费马小定理:(2,MOD)互质,则2^ ...

  8. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. hdu 4651 - Partition(五边形数定理)

    定理详见维基百科....http://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 代码如下 ...

随机推荐

  1. Nginx域名配置文件bak

    server { listen 80; server_name m.abd.com; rewrite ^(.*)$ https://$host$1 permanent; } server { list ...

  2. POJ-1113 Wall 计算几何 求凸包

    题目链接:https://cn.vjudge.net/problem/POJ-1113 题意 给一些点,求一个能够包围所有点且每个点到边界的距离不下于L的周长最小图形的周长 思路 求得凸包的周长,再加 ...

  3. caioj 1114 树形动态规划(TreeDP)3.0:多叉苹果树【scy改编ural1018二叉苹果树】

    一波树上背包秒杀-- #include<cstdio> #include<cstring> #include<algorithm> #include<vect ...

  4. 第一个JavaWeb工程

    这个工程主要用来研究log4j,所以就只有一个页面,希望以后慢慢进步. java动态生成网页主要使用servlet.把请求拦截下来,处理后返回结果. 这里创建的是一个maven工程. 结构如下:

  5. Qt之QImageWriter

    简述 QImageWriter类为写入图像至文件或设备提供了一个独立的接口.QImageWriter支持格式特定的选项(如:质量和压缩率),可以在存储图像之前进行设置.如果不需要这些选项,可以使用QI ...

  6. OKHttp使用简单介绍

    如今android网络方面的第三方库非常多,volley.Retrofit.OKHttp等,各有各自的特点,这边博客就来简介下怎样使用OKHttp. 梗概 OKHttp是一款高效的HTTP客户端,支持 ...

  7. mysql-通过例子解释四种隔离级别

    SQL标准定义了4种隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的. 低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销. 首先,我们使用 test 数据库, ...

  8. UI组件之AdapterView及其子类(四)Gallery画廊控件使用

    听说 Gallery如今已经不使用了,API使用ViewPaper取代了,以后再学专研ViewPaper吧如今说说Gallery画廊,就是不停显示图片的意思 Gallery是用来水平滚动的显示一系列项 ...

  9. pandas入门10分钟——serries其实就是data frame的一列数据

    10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...

  10. TortoiseGit配合msysGit在Git@OSC代码托管的傻瓜教程

    命令行太麻烦,肿么破?便便利用睡觉的时间解决了一点效率问题,tortoiseGit处理GitHub,一样可以处理 Git @osc ,虽然说可以用gitk来调出图形界面,but,我就是不想看见黑黑的命 ...