一、VGGNet:5段卷积【每段有2~3个卷积层+最大池化层】【每段过滤器个数:64-128-256-512-512】

每段的2~3个卷积层串联在一起的作用:

2个3×3的卷积层串联的效果相当于一个5×5的卷积层,即一个像素会跟周围5×5的像素产生关联。【28*28的输入经过一次5*5得到24*24,s=1,p=0,(28-5)/1 + 1 = 24。而28*28经过2个3*3也可以得到24*24.】

3个3×3的卷积层串联的效果相当于一个7×7的卷积层,

  • 好处一:3个3×3的卷积层串联拥有的餐数量比1个7×7的参数量少。只是后者的:(3×3×3)/ (7 × 7) = 55 %。
  • 好处二:3个3×3的卷积层拥有比1个7×7的卷积层更多的线性变换(如,前者可以使用三次Relu函数,后者只有一次),使得CNN对特征的学习能力更强。

VGG探索了卷积神经网络的深度与其性能之间的关系,反复堆叠3×3的小型卷积核和2×2的最大池化层,构筑了16~19层深度的卷积神经网络。

二、VGG训练的技巧:

  1. 先训练级别A的简单网络,再复用A网络的权重来初始化后面的几个复杂模型,这样训练收敛的速度更快。
  2. 在预测时,VGG采用Multi-Scale的方法,将图像scale到一个尺寸Q,并将图片输入卷积网络计算。然后在最后一个卷积层使用滑窗的方式进行分类预测,将不同窗口的分类结果平均,再将不同尺寸Q的结果平均得到最后结果。提高数据利用率和预测准确率
  3. 采用了Multi-scale做数据增强,防止过拟合

三、代码:

#加载模块
from datetime import datetime
import math
import time
import tensorflow as tf #定义函数:卷积层、池化层、全连接层
#conv_op用来创建卷积层
def conv_op(input_op , name ,kh , kw , n_out, dh ,dw , p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
w = tf.get_variable(scope+'w',shape = [kh,kw,n_in,n_out], dtype = tf.float32 ,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op,w,strides = [1,dh,dw,1],padding = 'SAME')
b = tf.Variable(tf.constant(0.0,shape = [n_out] , dtype = tf.float32),trainable = True , name = 'b')
z = tf.nn.bias_add(conv,b)
activation = tf.nn.relu(z,name = scope)
p+=[w,b]
return activation #用来创建全连接层
def fc_op(input_op,name,n_out,p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
w = tf.get_variable(scope+'w',shape = [n_in,n_out],dtype = tf.float32,
initializer= tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1,shape = [n_out],dtype = tf.float32),name = 'b')
activation = tf.nn.relu_layer(input_op,w,b,name = scope)
p += [w,b]
return activation #用来创建池化层
def mpool_op(input_op,name,kh,kw,dh,dw):
return tf.nn.max_pool(input_op,ksize = [1,kh,kw,1],strides = [1,dh,dw,1],padding = 'SAME',name = name) #建立VGG模型
def inference_op(input_op,keep_prob): p=[] conv1_1=conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p) conv1_2=conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p) pool1=mpool_op(conv1_2,name="pool1",kh=2,kw=2,dw=2,dh=2) conv2_1=conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p) conv2_2=conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p) pool2=mpool_op(conv2_2,name="pool2",kh=2,kw=2,dw=2,dh=2) conv3_1=conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) conv3_2=conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) conv3_3=conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p) pool3=mpool_op(conv3_3,name="pool3",kh=2,kw=2,dw=2,dh=2) conv4_1=conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv4_2=conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv4_3=conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) pool4=mpool_op(conv4_3,name="pool4",kh=2,kw=2,dw=2,dh=2) conv5_1=conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv5_2=conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) conv5_3=conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p) pool5=mpool_op(conv5_3,name="pool5",kh=2,kw=2,dw=2,dh=2) shp=pool5.get_shape() flattened_shape=shp[1].value*shp[2].value*shp[3].value resh1=tf.reshape(pool5,[-1,flattened_shape],name="resh1") fc6=fc_op(resh1,name="fc6",n_out=4096,p=p) fc6_drop=tf.nn.dropout(fc6,keep_prob,name="fc6_drop") fc7=fc_op(fc6_drop,name="fc7",n_out=4096,p=p) fc7_drop=tf.nn.dropout(fc7,keep_prob,name="fc7_drop") fc8=fc_op(fc7_drop,name="fc8",n_out=1000,p=p) softmax=tf.nn.softmax(fc8) predictions=tf.argmax(softmax,1) return predictions,softmax,fc8,p #时间差
def time_tensorflow_run(session,target,feed,info_string): num_steps_burn_in=10 total_duration=0.0 total_duration_squared=0.0 for i in range(num_batches+num_steps_burn_in): start_time=time.time() _=session.run(target,feed_dict=feed) duration=time.time()-start_time if i>=num_steps_burn_in: if not i%10: print('%s:step %d,duration=%.3f' % (datetime.now(),i-num_steps_burn_in,duration)) total_duration+=duration total_duration_squared+=duration*duration mn=total_duration/num_batches vr=total_duration_squared/num_batches-mn*mn sd=math.sqrt(vr) print('%s:%s across %d steps,%.3f +/- %.3f sec / batch' % (datetime.now(),info_string,num_batches,mn,sd)) #预测
def run_benchmark(): with tf.Graph().as_default(): image_size=224 images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],dtype=tf.float32,stddev=1e-1)) keep_prob=tf.placeholder(tf.float32) predictions,softmax,fc8,p=inference_op(images,keep_prob) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) time_tensorflow_run(sess,predictions,{keep_prob:1.0},"Forward") objective=tf.nn.l2_loss(fc8) grad=tf.gradients(objective,p) time_tensorflow_run(sess,grad,{keep_prob:0.5},"Forward-backward") #训练
batch_size=32 num_batches=100 run_benchmark()

TensorFlow实战学习笔记(14)------VGGNet的更多相关文章

  1. Ext.Net学习笔记14:Ext.Net GridPanel Grouping用法

    Ext.Net学习笔记14:Ext.Net GridPanel Grouping用法 Ext.Net GridPanel可以进行Group操作,例如: 如何启用Grouping功能呢?只需要在Grid ...

  2. SQL反模式学习笔记14 关于Null值的使用

    目标:辨别并使用Null值 反模式:将Null值作为普通的值,反之亦然 1.在表达式中使用Null: Null值与空字符串是不一样的,Null值参与任何的加.减.乘.除等其他运算,结果都是Null: ...

  3. golang学习笔记14 golang substring 截取字符串

    golang学习笔记14 golang substring 截取字符串golang 没有java那样的substring函数,但支持直接根据 index 截取字符串mystr := "hel ...

  4. mybatis学习笔记(14)-查询缓存之中的一个级缓存

    mybatis学习笔记(14)-查询缓存之中的一个级缓存 标签: mybatis mybatis学习笔记14-查询缓存之中的一个级缓存 查询缓存 一级缓存 一级缓存工作原理 一级缓存測试 一级缓存应用 ...

  5. Python3+Selenium3+webdriver学习笔记14(等待判断 鼠标事件 )

    !/usr/bin/env python -*- coding:utf-8 -*-'''Selenium3+webdriver学习笔记14(等待判断 鼠标事件 )'''from selenium im ...

  6. 并发编程学习笔记(14)----ThreadPoolExecutor(线程池)的使用及原理

    1. 概述 1.1 什么是线程池 与jdbc连接池类似,在创建线程池或销毁线程时,会消耗大量的系统资源,因此在java中提出了线程池的概念,预先创建好固定数量的线程,当有任务需要线程去执行时,不用再去 ...

  7. 【转】 C#学习笔记14——Trace、Debug和TraceSource的使用以及日志设计

    [转] C#学习笔记14——Trace.Debug和TraceSource的使用以及日志设计 Trace.Debug和TraceSource的使用以及日志设计   .NET Framework 命名空 ...

  8. [C++学习笔记14]动态创建对象(定义静态方法实现在map查找具体类名对应的创建函数,并返回函数指针,map真是一个万能类)good

    [C++学习笔记14]动态创建对象   C#/Java中的反射机制 动态获取类型信息(方法与属性) 动态创建对象 动态调用对象的方法 动态操作对象的属性 前提:需要给每个类添加元数据 动态创建对象 实 ...

  9. Redis in Action : Redis 实战学习笔记

    1 1 1 Redis in Action : Redis  实战学习笔记 1 http://redis.io/ https://github.com/antirez/redis https://ww ...

随机推荐

  1. Future和Callable的使用

    应用场景 财务成本核算.可能会有多个耗时的步骤.如果顺序执行是非常慢的.再相互数据获取数据不依赖的情况下可以使用Future并行执行 public class FutureTest implement ...

  2. [Codeup 25482]选美

    [Codeup 25482 ]选美 题目 一年一度的星哥选美又拉开了帷幕 N个人报名参加选拔,每个人都有着各自的相貌参数和身材参数(不大于 10000 的正整数).你的任务是尽可能让更多人被星哥选中, ...

  3. codevs——T1220 数字三角形

    http://codevs.cn/problem/1043/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descr ...

  4. Servlet 实现訪问量的统计小案例

    今天学习了Servlet的基础知识,学习了一个统计訪问量的小案例,记录一下 package cn.selevet_01; import java.io.IOException; import java ...

  5. 《编程导论(Java)·2.1.2 啊,我看到了多态》-什么是多态(polymorphism)

    1.不明觉厉 很多人学习多态时,会认为. 之所以不明觉厉,由于多态的定义:事物存在的多种表现形态:而后,有人将重载(overload).改写(override).多态变量和泛型归结于同一个术语&quo ...

  6. [WPF]c#调用默认浏览器打开网址

    //调用系统默认的浏览器 System.Diagnostics.Process.Start("http://www.zhaokeli.com");

  7. 深入浅出游戏算法(4)-unity3d算法(1)-球转动

    球 转动 按以下布局放置好unity3d的各个组件.设置好渲染.位置.光源.大小等 麦好的AI乐园博客全部内容是原创,假设转载请注明来源 http://blog.csdn.net/myhaspl/ 编 ...

  8. DRP——重定向与转发

    重定向 重定向就是又一次进行请求.第一次请求.容器推断请求的类型,是否须要重定向. 重定向的语句是"response.SendRedirect("index.jsp"); ...

  9. luogu1120 小木棍【数据加强版】 暴力剪枝

    题目大意 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50.现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长度.给出每段小木棍的长度,编程帮 ...

  10. 【Codeforces 258A】 Game With Sticks

    [题目链接] http://codeforces.com/contest/451/problem/A [算法] 若n和m中的最小值是奇数,则先手胜,否则后手胜 [代码] #include<bit ...