题目:洛谷P1312、Vijos P1738、codevs1136。

题目大意:在一个7行5列的棋盘(左下角坐标0,0)上,有一些不同颜色的棋子。

规定某一时刻,连续三个横排或竖列的棋子颜色相同,则它们被消掉(同时满足条件的一起消掉,存在多个这样的情况有公共棋子时,所有的都消掉)。

然后有一种操作:

将一个棋子往左/右移动或和左边/右边的棋子交换。(左为-1,右为1)

规定棋盘上没有棋子时,游戏胜利。

现在给出顺时针旋转$90^\circ$后的棋盘,你要进行恰好n次操作,使游戏胜利,输出字典序最小(横坐标最小,然后纵坐标最小,然后方向最小,1比-1小)的操作方案。

如果不可能,输出-1。

解题思路:看到这么小的数据范围($n\leq 5$),肯定想到暴搜,而好像也没有别的方法。

题目要求字典序最小,那我们就按字典序最小的方案搜,找到就输出结束程序。

这里有一些剪枝:

①当一种颜色的个数为1或2时,一定不可能胜利,跳出。

②搜的时候,先搜往右的,如果当前棋子和右边棋子颜色相同,就不搜。

③搜左边时,只考虑左边为空的情况,如果不为空,则等价于左边的棋子向右交换的操作,字典序更小,因此一定不可能为答案。

消除的情况,可以枚举中间点,然后判断三个是否相同即可。

掉下来的情况,暴力移动即可。

剩下的,只需注意状态的保存和还原就行了。

别的没什么技巧可言。

C++ Code:

#include<cstdio>
#include<cstring>
#include<cstdlib>
int n;
int bl[9][9],tong[12]={0},ansx[7],ansy[7],yd[7];
bool bj[9][9];
void clean(){
bool hasqc=true;
while(hasqc){
hasqc=false;
bool dxl=true;
while(dxl){
dxl=false;
for(int i=0;i<5;++i)
for(int j=0;j<8;++j)
if(bl[i][j]==0&&bl[i][j+1])
bl[i][j]=bl[i][j+1],bl[i][j+1]=0,dxl=true;
}
memset(bj,0,sizeof bj);
for(int i=0;i<5;++i)
for(int j=0;j<8;++j){
if(i&&i<4&&bl[i][j]&&bl[i][j]==bl[i-1][j]&&bl[i][j]==bl[i+1][j])
bj[i][j]=bj[i-1][j]=bj[i+1][j]=hasqc=true;
if(j&&bl[i][j]&&bl[i][j]==bl[i][j-1]&&bl[i][j]==bl[i][j+1])
bj[i][j]=bj[i][j-1]=bj[i][j+1]=hasqc=true;
}
if(hasqc){
for(int i=0;i<5;++i)
for(int j=0;j<8;++j)
if(bj[i][j])--tong[bl[i][j]],bl[i][j]=0;
}
}
}
void dfs(int now){
if(now>n){
for(int i=0;i<12;++i)
if(tong[i])return;
for(int i=1;i<=n;++i)
printf("%d %d %d\n",ansx[i],ansy[i],yd[i]);
exit(0);
}
for(int i=0;i<12;++i)
if(tong[i]&&tong[i]<3)return;
int ylzt[9][9],yltong[12];
for(int i=0;i<9;++i)for(int j=0;j<9;++j)
ylzt[i][j]=bl[i][j];
memcpy(yltong,tong,sizeof tong);
for(int i=0;i<5;++i){
for(int j=0;j<8;++j)
if(ylzt[i][j]){
if(i<4&&ylzt[i+1][j]!=ylzt[i][j]){
memcpy(tong,yltong,sizeof tong);
for(int i=0;i<9;++i)for(int j=0;j<9;++j)
bl[i][j]=ylzt[i][j];
int x=bl[i][j];
bl[i][j]=bl[i+1][j];
bl[i+1][j]=x;
ansx[now]=i,ansy[now]=j,yd[now]=1;
clean();
dfs(now+1);
}
if(i&&!ylzt[i-1][j]){
memcpy(tong,yltong,sizeof tong);
for(int i=0;i<9;++i)for(int j=0;j<9;++j)
bl[i][j]=ylzt[i][j];
bl[i-1][j]=bl[i][j];
bl[i][j]=0;
ansx[now]=i,ansy[now]=j,yd[now]=-1;
clean();
dfs(now+1);
}
}
}
for(int i=0;i<9;++i)for(int j=0;j<9;++j)
bl[i][j]=ylzt[i][j];
memcpy(tong,yltong,sizeof tong);
}
int main(){
scanf("%d",&n);
for(int i=0;i<5;++i){
int t;
scanf("%d",&t);
for(int j=0;t;++j){
bl[i][j]=t;
++tong[t];
scanf("%d",&t);
}
}
dfs(1);
puts("-1");
return 0;
}

[NOIP2011提高组]Mayan游戏的更多相关文章

  1. [NOIP2011] 提高组 洛谷P1312 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  2. 刷题总结——mayan游戏(NOIP2011提高组day2T3)

    题目: 题目背景 NOIP2011提高组 DAY1 试题. 题目描述 Mayan puzzle 是最近流行起来的一个游戏.游戏界面是一个 7 行 5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  3. Noip2011 提高组 Day1 T3 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  4. 洛谷P1312 [NOIP2011提高组Day1T3]Mayan游戏

    Mayan游戏 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游 ...

  5. luogu1003铺地毯[noip2011 提高组 Day1 T1]

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  6. [NOIP2011] 提高组 洛谷P1315 观光公交

    题目描述 风景迷人的小城Y 市,拥有n 个美丽的景点.由于慕名而来的游客越来越多,Y 市特意安排了一辆观光公交车,为游客提供更便捷的交通服务.观光公交车在第 0 分钟出现在 1号景点,随后依次前往 2 ...

  7. [NOIP2011] 提高组 洛谷P1003 铺地毯

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  8. NOIP2011(提高组)DAY2---观光公交(vijosP1741)

    描述 风景迷人的小城Y市,拥有n个美丽的景点.由于慕名而来的游客越来越多,Y市特意安排了一辆观光公交车,为游客提供更便捷的交通服务.观光公交车在第0分钟出现在1号景点,随后依次前往2.3.4……n号景 ...

  9. 洛谷-铺地毯-NOIP2011提高组复赛

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

随机推荐

  1. Unity5.0 状态机新增的entry/exit

    相关官方日志 https://blogs.unity3d.com/cn/2014/06/26/shiny-new-animation-features-in-unity-5-0/

  2. hdu 1240(三维广搜)

    题意: 有一个n*n*n的三维空间. 给你起始坐标和终点坐标.要你从起点到终点,问最少需要多少步走出去.如果走不出去则输出"NO ROUTE". 空间中 'O' 表示这个点可以走, ...

  3. 算法27-----第N个数字

    1.题目: 在无限的整数序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...中找到第 n 个数字. 注意: n 是正数且在32为整形范围内 ( n < 231). ...

  4. java中内存溢出和内存泄漏的区别

    虽然在java中我们不用关心内存的释放, 垃圾回收机制帮助我们回收不需要的对象,但实际上不正当的操作也会产生内存问题:如,内存溢出.内存泄漏 内存溢出:out of memory:简单通俗理解就是内存 ...

  5. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础

    大纲 what is color? The result of interaction between physical light in the environment and our visual ...

  6. php读写excel —— PhpSpreadsheet组件

    前言 PhpSpreadsheet是一个纯PHP类库,它提供了一组类,允许您从不同的电子表格文件格式(如Excel和LibreOffice Calc)读取和写入.用PHP读取Excel.CSV文件 还 ...

  7. Virtual Box 新建一个虚拟机安装系统(补充:WIN7 64 bit 系统虚拟机无法安装 64 bit 系统问题)

    1.安装Virtual Box好后,点击新建 2.配置内存大小,这个根据自己需要配置就好 3.创建虚拟硬盘 这里选择固定分配.动态分配都可以,接下来就分配硬盘大小了 4.新建好后我们点击刚才建立的虚拟 ...

  8. vue自定义一个过滤器

    vue如何自定义一个过滤器 html代码: <div id="app"> <input type="text" v-model="m ...

  9. jsoup抓取网页+具体解说

    jsoup抓取网页+具体解说 Java 程序在解析 HTML 文档时,相信大家都接触过 htmlparser 这个开源项目.我以前在 IBM DW 上发表过两篇关于 htmlparser 的文章.各自 ...

  10. 怎样在Nginxserver中启用Gzip压缩

    原文链接: Enable GZIP Compression on nginx Servers原文日期: 2014年7月16日翻译日期: 2014年7月19日翻译人员: 铁锚 速度决定一切,没有什么比一 ...