BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000。聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃掉可可,那机器人会再向可可的方向移动一格,如果有两个节点到可可的距离相等,那机器人会移动到编号较小的一个节点。然后可可会等可能性移动到与它的任意一个相连的节点或者原地不动(即使她明知道移动到某个节点会被吃掉)。即1/(outc[x]+1),outc为出度。求可可被吃掉时机器人走的期望时间
概率DP记忆化+递归
先预处理出任意两点距离
接下来递归求答案,记录一个f[x][y]表示可可在x节点,机器人在y节点时,可可被吃掉的期望时间,x,y这种局面可能出现多次,由不同的前驱状态到达x,y这种状态,所以乘上前驱状态转移到当前状态的概率,就是这个情况对前驱状态答案的贡献。
对于每种状态,答案都是,prob是前驱状态转移到当前状态的的概率
时间是
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
#define mod 20100403
#define p(i,j) ((i-1)*m+j)
#define dd double
using namespace std; char str[N][N];
int n,m,s,e,cte;
int inc[N],ouc[N],d[N][N],head[N],use[N];
dd f[N][N];
struct Edge{int to,nxt;}edge[N*];
void ae(int u,int v){
++cte,edge[cte].to=v,inc[v]++,ouc[u]++;
edge[cte].nxt=head[u],head[u]=cte;
}
void bfs()
{
memset(d,0x3f,sizeof(d));
for(int i=;i<=n;i++)
{
d[i][i]=;
queue<int>q;
q.push(i),use[i]=;
memset(use,,sizeof(use));
while(!q.empty())
{
int x=q.front();q.pop();
for(int j=head[x];j!=-;j=edge[j].nxt){
int v=edge[j].to;
if(d[i][v]>d[i][x]+){
d[i][v]=d[i][x]+;
if(!use[v]) use[v]=,q.push(v);
}
}use[x]=;
}
}
}
dd dfs(int x,int y,dd pb)
{
int vx,to1,to2;
dd ans=1.0;
if(f[x][y]-0.000000001>) return f[x][y]*pb;
if(!d[x][y]) {f[x][y]=;return ;}
if(d[x][y]<=) {f[x][y]=1.0;return pb*1.0;}
to1=y;
for(int j=head[y];j!=-;j=edge[j].nxt){
int v=edge[j].to;
if(d[x][v]<d[x][to1]) to1=v;
else if(d[x][v]==d[x][to1]) to1=min(v,to1);
}
to2=to1;
for(int j=head[to1];j!=-;j=edge[j].nxt){
int v=edge[j].to;
if(d[x][v]<d[x][to2]) to2=v;
else if(d[x][v]==d[x][to2]) to2=min(v,to2);
}
for(int j=head[x];j!=-;j=edge[j].nxt){
vx=edge[j].to;
ans+=dfs(vx,to2,1.0/(1.0*ouc[x]+1.0));
}
ans+=dfs(x,to2,1.0/(1.0*ouc[x]+1.0));
f[x][y]=ans;
return ans*pb;
} int main()
{
scanf("%d%d%d%d",&n,&m,&s,&e);
int x,y;memset(head,-,sizeof(head));
for(int i=;i<=m;i++)
scanf("%d%d",&x,&y),
ae(x,y),ae(y,x);
bfs();
printf("%.3lf\n",dfs(e,s,1.0));
return ;
}
BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)的更多相关文章
- bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪 ...
- BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )
用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...
- BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )
概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...
- 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...
- BZOJ 2318: Spoj4060 game with probability Problem (概率dp)(博弈论)
2318: Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果 ...
- BZOJ 1415: [Noi2005]聪聪和可可 [DP 概率]
传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走 ...
- bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索
期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...
- bzoj 1415: [Noi2005]聪聪和可可
直接上记忆化搜索 #include<queue> #include<cstdio> #include<algorithm> using namespace std; ...
- bzoj 1415: [Noi2005]聪聪和可可【期望dp+bfs】
因为边权为1所以a直接bfs瞎搞就行--我一开始竟然写了个spfa #include<iostream> #include<cstdio> #include<queue& ...
随机推荐
- BZOJ 4951 [WF2017]Money for Nothing (决策单调优化DP+分治)
题目大意:略 题目传送门 不愧是$World final$的神题,代码短,思维强度大,细节多到吐..调了足足2h 贪心 我们利用贪心的思想,发现有一些工厂/公司是非常黑心的 以工厂为例,对于一个工厂$ ...
- 终极对决!Dubbo 和 Spring Cloud 微服务架构到底孰优孰劣
标签: 微服务dubbospring架构 前言 微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然 ...
- Linux Shell脚本编程-语句控制
过程式编程语言bash脚本编程面向过程的编程 顺序执行:默认法则,按照顺序一条一条语句执行 选择执行:分支,条件判断,符合条件的分支予以执行 循环执行:将同一段代码反复执行有限次,所以循环必须有 ...
- InfoSYS-20170114
1.描述Spring的事务机制 2.描述并发脏数据,如何避免 3.如何防止同一个请求重复提交(重复付款) 4.如何监控程序性能 5.CPU过高说明什么问题 通常是程序中有死循环, 参考 http:// ...
- 参数化取值策略Unique
Unique:主要是强调取值的唯一性,如果到最后没有该值了,LR提供了其他解决方案,如图所示: 此处的下拉列表中提供了三种方式,具体如下: About Vuser,当取值次数超过参数的行数时,忽略脚本 ...
- daning links 系列
1001 Easy Finding POJ-3740 1002 Power Stations HDOJ-3663 1003 Treasure Map ZOJ-3209 1004 Lamp HDOJ-2 ...
- BLOB的读写操作
//BLOB写入操作package zxt.xsfw.action.ceshi; import javax.servlet.http.HttpServletRequest; import javax. ...
- File System Design Case Studies
SRC=http://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html Paul Krzyzanowski April 24, 2014 Int ...
- PHP 防xss攻击
PHP直接输出html的,可以采用以下的方法进行过滤: 1.htmlspecialchars函数 2.htmlentities函数 3.HTMLPurifier.auto.php插件 4.Remove ...
- BA-siemens-ppm模块在ALN层通信
PPM作为新的扩展模块,有MS/TP通讯的能力,但是在常规设置的时候必须设置在PXC Modular下面,PPM上线也必须在PXC Modular上中超级终端设置,偶然通过一个项目实现了PPM挂载在A ...