FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

 
 
注意从小区间推大区间,从内向外推,也就是从后卖出的物品向前卖出的物品状态递推。
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; #define MAXN 2002
/*
区间DP,从后向前推,dp[i][j]表示首端元素为a[i],尾端为a[j]的情况
dp[i][j] = max(dp[i+1][j]+t*a[i],dp[i][j-1]+t*a[j])
*/
int a[MAXN],dp[MAXN][MAXN];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
dp[i][i] = n*a[i];//最后一个卖出元素是a[i]的情况
for(int l=;l<n;l++)
{
for(int i=;i+l<=n;i++)
{
int j = i+l;
dp[i][j] = max(dp[i+][j]+(n-l)*a[i],dp[i][j-]+(n-l)*a[j]);
}
}
printf("%d\n",dp[][n]);
return ;
}

O - Treats for the Cows 区间DP的更多相关文章

  1. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  2. POJ3086 Treats for the Cows(区间DP)

    题目链接  Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...

  3. Treats for the Cows 区间DP POJ 3186

    题目来源:http://poj.org/problem?id=3186 (http://www.fjutacm.com/Problem.jsp?pid=1389) /** 题目意思: 约翰经常给产奶量 ...

  4. 【BZOJ】1652: [Usaco2006 Feb]Treats for the Cows(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1652 dp.. 我们按间隔的时间分状态k,分别为1-n天 那么每对间隔为k的i和j.而我们假设i或者 ...

  5. poj3186 Treats for the Cows(区间)

    题目链接:http://poj.org/problem?id=3186 题意:第一个数是N,接下来N个数,每次只能从队列的首或者尾取出元素. ans=每次取出的值*出列的序号.求ans的最大值. 样例 ...

  6. POJ 3186Treats for the Cows(区间DP)

    题目链接:http://poj.org/problem?id=3186 题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最 ...

  7. POJ 3186Treats for the Cows (区间DP)

    详见代码 #include <stdio.h> #include <algorithm> #include <string.h> using namespace s ...

  8. [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

    传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...

  9. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

随机推荐

  1. python tkinter窗口置顶

    下面两句即可实现root窗口的置顶显示,可以用于某些程序的消息提示,能够弹出到桌面显示 root = Tk()root.wm_attributes('-topmost',1)

  2. LeetCode 要记得一些小trick

    最近搞了几场编程比赛,面试题或者是LeetCode周赛.每次都不能做完,发现时间不够用. 看了别人的代码才知道,同样实现相同的功能,可能别人只需要用一个恰当的函数,就会比自己少些不少代码,争得了时间. ...

  3. Spring: (一) -- 春雨润物之 核心IOC

    作为一个Java人,想必都或多或少的了解过Spring.对于其优势也能道个一二,诸如方便解耦.支持AOP编程.支持声明式事务.方便测试等等.Spring也不仅仅局限于服务器端开发,它可以做非常多的事情 ...

  4. JavaScript 兼容新旧版chrome和firefox的桌面通知

    1.新/旧版本的chrome和firefox都可支持,IE下不支持因此设置为了在最小化窗口处闪烁显示提示文字. 2.设置为提示窗口显示5秒即关闭. 3.可设置图标和点击提示窗口要跳转到的页面(见输入参 ...

  5. Java编程思想读书笔记_第8章

    覆盖私有方法 class Father { private void f() { System.out.println("Father::f()"); } public stati ...

  6. C++中图片重命名

    非常简单的小程序,满足自己的需求. #include <iostream> #include <fstream> #include<sstream> using n ...

  7. P1823 音乐会的等待

    题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见的. ...

  8. Python3.4的Pillow库实现验证码图片

    转自 http://blog.csdn.net/bin381/article/details/41969493 from PIL import Image,ImageDraw, ImageFont, ...

  9. 项目经验——Sql server 数据库的备份和还原____还原数据库提示“介质集有2个介质簇,但只提供了1个。必须提供所有成员” .

    在对数据库备份与还原的过程中,我遇到一个问题“介质集有2个介质簇,但只提供了1个.必须提供所有成员”,下面详细的介绍一下遇到问题的经过与问题解决的方法! 一.备份与还原遇到的问题描述与解决方法: 前两 ...

  10. [Windows Server 2012] SQL Server 备份和还原方法

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:SQL S ...