FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

 
 
注意从小区间推大区间,从内向外推,也就是从后卖出的物品向前卖出的物品状态递推。
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; #define MAXN 2002
/*
区间DP,从后向前推,dp[i][j]表示首端元素为a[i],尾端为a[j]的情况
dp[i][j] = max(dp[i+1][j]+t*a[i],dp[i][j-1]+t*a[j])
*/
int a[MAXN],dp[MAXN][MAXN];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
dp[i][i] = n*a[i];//最后一个卖出元素是a[i]的情况
for(int l=;l<n;l++)
{
for(int i=;i+l<=n;i++)
{
int j = i+l;
dp[i][j] = max(dp[i+][j]+(n-l)*a[i],dp[i][j-]+(n-l)*a[j]);
}
}
printf("%d\n",dp[][n]);
return ;
}

O - Treats for the Cows 区间DP的更多相关文章

  1. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  2. POJ3086 Treats for the Cows(区间DP)

    题目链接  Treats for the Cows 直接区间DP就好了,用记忆化搜索是很方便的. #include <cstdio> #include <cstring> #i ...

  3. Treats for the Cows 区间DP POJ 3186

    题目来源:http://poj.org/problem?id=3186 (http://www.fjutacm.com/Problem.jsp?pid=1389) /** 题目意思: 约翰经常给产奶量 ...

  4. 【BZOJ】1652: [Usaco2006 Feb]Treats for the Cows(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1652 dp.. 我们按间隔的时间分状态k,分别为1-n天 那么每对间隔为k的i和j.而我们假设i或者 ...

  5. poj3186 Treats for the Cows(区间)

    题目链接:http://poj.org/problem?id=3186 题意:第一个数是N,接下来N个数,每次只能从队列的首或者尾取出元素. ans=每次取出的值*出列的序号.求ans的最大值. 样例 ...

  6. POJ 3186Treats for the Cows(区间DP)

    题目链接:http://poj.org/problem?id=3186 题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最 ...

  7. POJ 3186Treats for the Cows (区间DP)

    详见代码 #include <stdio.h> #include <algorithm> #include <string.h> using namespace s ...

  8. [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

    传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...

  9. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

随机推荐

  1. [笔试面试题] 3-C++关键字篇

    C/C++关键字篇   语言是编程的基础,掌握基本的语言知识是编程的前提条件.关键字是组成语言的最基本单位,对关键字的理解,有助于编写高质量的代码. 1 static(静态)变量有什么作用? 在函数体 ...

  2. pip安装itchat模块成功后annocanda中No module named 'itchat'

    在cmd中pip install itchat 成功后在annocanda中却出现了下面的情况: 经过查找网上各种查询,原来pip默认是把东西安装在系统python环境中,即C:\Python27\L ...

  3. 总结MySQL中SQL语法的使用

    --where子句操作符: where子句操作符 = 等于 <> 不等于(标准语法) != 不等于(非标准语法,可移植性差) < 小于 <= 小于等于 > 大于 > ...

  4. 93. [NOIP2001] 数的划分

    问题描述 将整数n分成k份,且每份不能为空,任意两种方案不能相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. ...

  5. 第2章 JavaScript语法

    1.最好的做法是把<script>标签放到html文档的最后,</body>标签之前. 举例: ...... <script src="file.js" ...

  6. Android RxJava1.X升级到RxJava2.X笔记

    简书地址 http://www.jianshu.com/p/2badfbb3a33b 描述 RxJava 1.X RxJava 2.X package包名 rx.xxx io.reactivex.xx ...

  7. 树莓派连接arduino(USB串口通讯)

    2018-06-0115:12:19 https://blog.csdn.net/song527730241/article/details/50884890 重要步骤  查看端口:(ttyUSB0或 ...

  8. opencv边缘滤波

    2018-03-0422:16:11 import cv2 as cv import numpy as np def bi_demo (image): print ("ceshi" ...

  9. python自动化--语言基础二运算符、格式化输出、条件语句、循环语句、列表、元组

    运算符包括:算术运算符.比较运算符.赋值运算符.逻辑运算符.成员运算符.身份运算符. 算术运算符 %   取模(余数) //  取相除的整数部分 /   (5/2=2.5) 比较运算符 ==  等于 ...

  10. C++(存储类)经典!!

    C++变量的存储类别(动态存储.静态存储.自动变量.寄存器变量.外部变量)动态存储方式与静态存储方式 我们已经了解了变量的作用域.作用域是从空间的角度来分析的,分为全局变量和局部变量. 变量还有另一种 ...