BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
【题解】
思维题,看了别人的博客才会写。
写出这样的矩阵:
1,3,9,...
2,6,18,...
4,12.36,...
8,24,72,...
我们要做的就是从矩阵中选出一些数字,但是不能选相邻的。
我们可以发现,在100000的范围内,这个矩阵最多只有18行,11列。
那么这个矩阵的取数字的方案数直接状压DP即可。f[i][j]表示第i行,状态为j的方案数,转移就是f[i][j]=sigma(f[i-1][k]) ,条件是(j&k==0且k&(k>>1)==0)
但是这个矩阵不能覆盖值域之内的所有数字,怎么办呢?我们可以找到最小的没有被覆盖的数,用它放在(1,1)的位置构造一个类似的矩阵。
可以证明每个数字恰好在矩阵中出现一次。所以最终答案就是各个矩阵的答案相乘。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define rg register
#define N 50
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int mod=;
int n,ans=,a[N][N],mx[N],f[N][],exp[N];
bool vis[];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
} inline int calc(int x){
memset(mx,,sizeof(mx)); memset(f,,sizeof(f));
a[][]=x;
for(rg int i=;i<=;i++)a[i][]=(a[i-][]*<=n)?a[i-][]<<:n+;
for(rg int i=;i<=;i++)
for(rg int j=;j<=;j++) a[i][j]=(a[i][j-]*<=n)?a[i][j-]*:n+;
for(rg int i=;i<=;i++)
for(rg int j=;j<=;j++)if(a[i][j]<=n){
mx[i]+=exp[j-];
vis[a[i][j]]=;
}
f[][]=;
for(rg int i=;i<=;i++)
for(rg int j=;j<=mx[i];j++)if(!(j&(j>>)))
for(rg int k=;k<=mx[i-];k++)if(!(j&k)&&!(k&(k>>)))
f[i][j]=MOD(f[i][j]+f[i-][k]);
return f[][];
}
int main(){
exp[]=; for(rg int i=;i<;i++) exp[i]=exp[i-]<<;
n=read();
for(rg int i=;i<=n;i++)if(!vis[i]) ans=(1ll*ans*calc(i))%mod;
printf("%d",ans);
return ;
}
BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】的更多相关文章
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)
题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...
随机推荐
- hdu 3461 Code Lock 并查集(有点难想到)★★
#include<stdio.h> #include<math.h> ]; int count; #define mod 1000000007 int find(int x) ...
- python之处理json
import json# json串就是字符串dic={ 'car':{'color':'red','price':100,'count':50}, 'iphone':{'color':'骚粉色',' ...
- 洛谷 P4585 [FJOI2015]火星商店问题
(勿看,仅作笔记) bzoj权限题... https://www.luogu.org/problemnew/show/P4585 对于特殊商品,直接可持久化trie处理一下即可 剩下的,想了一段时间c ...
- nth Permutation LightOJ - 1060
nth Permutation LightOJ - 1060 题意:给定一个小写字母组成的字符串,对其中所有字母进行排列(排列组合的排列),将所有生成的排列按字典序排序,求排序后第n个排列. 方法:按 ...
- 记忆化搜索(DFS+DP) URAL 1501 Sense of Beauty
题目传送门 /* 题意:给了两堆牌,每次从首部取出一张牌,按颜色分配到两个新堆,分配过程两新堆的总数差不大于1 记忆化搜索(DFS+DP):我们思考如果我们将连续的两个操作看成一个集体操作,那么这个操 ...
- BFS Codeforces Round #297 (Div. 2) D. Arthur and Walls
题目传送门 /* 题意:问最少替换'*'为'.',使得'.'连通的都是矩形 BFS:搜索想法很奇妙,先把'.'的入队,然后对于每个'.'八个方向寻找 在2*2的方格里,若只有一个是'*',那么它一定要 ...
- HDU 1221 Rectangle and Circle 考虑很多情况,good题
http://acm.hdu.edu.cn/showproblem.php?pid=1221 114 92 31 95 13 96 3 这题只需要判断圆和矩形是否相交,然后在里面是不算相交的. 那么就 ...
- 摄像头调用,h5调用摄像头进行扫一扫插件备份
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- AJPFX关于多线程概述及应用
一.认识多任务.多进程.单线程.多线程要认识多线程就要从操作系统的原理说起. 以前古老的DOS操作系统(V 6.22)是单任务的,还没有线程的概念,系统在每次只能做一件事情.比如你在copy东西的时候 ...
- jsonp对付同源策略
当 协议不同或者域名/ip不同或者端口号不同 , 都不算是同源 这时候 源生的ajax 就不能进行数据请求了 JSONP json with padding 在平时的开发中也发现了 ,当我们请求 ...