题目:

Description

HH有一串由各种漂亮的贝壳组成的项链。HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一
段贝壳,思考它们所表达的含义。HH不断地收集新的贝壳,因此他的项链变得越来越长。有一天,他突然提出了一
个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答。。。因为项链实在是太长了。于是,他只
好求助睿智的你,来解决这个问题。

Input

第一行:一个整数N,表示项链的长度。 
第二行:N个整数,表示依次表示项链中贝壳的编号(编号为0到1000000之间的整数)。 
第三行:一个整数M,表示HH询问的个数。 
接下来M行:每行两个整数,L和R(1 ≤ L ≤ R ≤ N),表示询问的区间。
N ≤ 50000,M ≤ 200000。

Output

M行,每行一个整数,依次表示询问对应的答案。

Sample Input

6
1 2 3 4 3 5
3
1 2
3 5
2 6

Sample Output

2
2
4

HINT

 

Source

题解:

莫队算法模板题···也可以用分块做···

先说说针对数字序列的莫队吧···核心思想就是在题目允许询问离线的情况下,先将序列分块,然后将询问排序····第一关键字是left的所在块(越小越靠前)···第二关键字是right的大小(越小越靠前),然后创建tail和head指针,根据询问移动tail和head的同时更改所维护的答案·····

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=5e4+;
const int M=2e5+;
struct node
{
int l,r,id;
}q[M];
int head,tail,id[N],num[N],cnt[],n,m,s,tots,ans,anss[M];
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
bool cmp(node x,node y)
{
return (id[x.l]<id[y.l])||(id[x.l]==id[y.l]&&x.r<y.r);
}
int main()
{
//freopen("a.in","r",stdin);
n=R();s=(int)sqrt(n);
for(int i=;i<=n;i++) num[i]=R();
m=R();
for(int i=;i<=m;i++)
q[i].l=R(),q[i].r=R(),q[i].id=i;
for(int i=;i<=n;i++)
{
if(i%s==) id[i]=++tots;
else id[i]=tots;
}
sort(q+,q+m+,cmp);
for(int i=;i<=m;i++)
{
while(head<q[i].l)
{
cnt[num[head]]--;
if(!cnt[num[head]]) ans--;
head++;
}
while(head>q[i].l)
{
head--;
if(!cnt[num[head]]) ans++;
cnt[num[head]]++;
}
while(tail>q[i].r)
{
cnt[num[tail]]--;
if(!cnt[num[tail]]) ans--;
tail--;
}
while(tail<q[i].r)
{
tail++;
if(!cnt[num[tail]]) ans++;
cnt[num[tail]]++;
}
anss[q[i].id]=ans;
}
for(int i=;i<=m;i++)
printf("%d\n",anss[i]);
return ;
}

算法复习——莫队算法(bzoj1878)的更多相关文章

  1. 信心题--FUOJ2226(莫队算法)

    http://acm.fzu.edu.cn/problem.php?pid=2226 信心题,还说是信心题,题目给的真好.但是一点都不像信心题. 又是一个新的算法,莫队算法 莫队算法是一个用数组就可以 ...

  2. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  3. XOR and Favorite Number(莫队算法+分块)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  4. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  5. 基于Manhattan最小生成树的莫队算法

    点u,v的Manhattan距离:distance(u,v)= |x2-x1|+|y2-y1| Manhattan最小生成树:边权值为两个点Manhattan距离的最小生成树. 普通算法:prim复杂 ...

  6. 莫队算法详解和c实现

    解析和实现 摘要:        莫队算法是一个对于区间.树或其他结构离线(在线)维护的算法,此算法基于一些基本算法,例如暴力维护,树状数组,分块,最小曼哈顿距离生成树,对其进行揉合从而产生的一个简单 ...

  7. 【BZOJ】4358: permu 莫队算法

    [题意]给定长度为n的排列,m次询问区间[L,R]的最长连续值域.n<=50000. [算法]莫队算法 [题解]考虑莫队维护增加一个数的信息:设up[x]表示数值x往上延伸的最大长度,down[ ...

  8. hdu 5145(莫队算法+逆元)

    NPY and girls Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

随机推荐

  1. Vivado增量式编译

    Vivado 中的增量设计会重新利用已有的布局布线数据来缩短运行时间,并生成可预测的结果.当设计有 95% 以上的相似度时,增量布局布线的运行时间会比一般布局布线平均缩短2倍.若相似度低于80%,则使 ...

  2. 洛谷 P1330 封锁阳光大学

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  3. Android计算器布局

    Android(安桌)计算器布局实现         ——解决整个屏幕方案 引言:     学完了android布局的几种方式,做了一个android计算器. 我在网上搜索了这方面的资料,发现了布局都 ...

  4. SQLite-表达式

    SQLite -表达式 一个表达式是一个或多个值的组合,运算符和SQL函数,评价一个值. SQL表达式就像公式和都写在查询语言.您还可以使用为特定的数据集查询数据库. 语法: 考虑到SELECT语句的 ...

  5. MVC 学习小总结

    一般情况下新增字段首选现在数据库更新,然后再从数据库更新模型 第二选择是从模板添加字段更新数据库(面临删除所有数据可能,慎用) 第三是没有T4模板的前提下再模型完成操作然后修改model类防止mode ...

  6. MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数

    这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...

  7. 思维 || Make It Equal

    http://codeforces.com/contest/1065/problem/C 题意:给你n个高度分别为a[i]的塔,每次可以横着切一刀,切掉不多于k个塔,问最少切多少刀才能把塔切的都一样高 ...

  8. 单机简单搭建一个kafka集群(没有进行内核参数和JVM的调优)

    1.JDK安装 在我的部署单节点kafka的博客里有相关的方法.(https://www.cnblogs.com/ToBeExpert/p/9789486.html )zookeeper和kafka的 ...

  9. python 发送附件

    #!/usr/bin/env python # encoding: utf-8 #@author: 东哥加油! #@file: sksendmail.py #@time: 2018/8/20 13:3 ...

  10. Centos7.2 上部署 FastDFS_V5.05

    1.安装gcc (编译时需要) [root@localhost~]# yum -y install gcc gcc-c++ 2.安装libevent ,FastDFS依赖libevent库; [roo ...