题目大意:求n范围内最大的反素数(反素数定义:f(x)表示x的因子数,f(x)>f(x1) (0<x1<x))

x用质因数形式为:x=a1^p1*a2^p2......an^pn(ai为素数),那么一个数的因子个数f(x)=(p1+1)*(p2+1)*....*(pn+1)

反素数的性质有:x=a1^p1*a2^p2......an^pn,p1>=p2>=......>=pn

证明:若pi<pj(i<j),那么存在与它因子个数相等的x1且x1<x,与反素数的定义矛盾。

前十四个素数每个素数用一次的乘积已经大于10^16,所以枚举前十四个素数就可以了。

#include<iostream>
#include<cstdio>
using namespace std; typedef long long LL;
int prime[]={,,,,,,,,,,,,,,};
LL n,ans,Max; void dfs(LL sum,LL num,LL k,LL t)
{
if(sum>Max) {Max=sum;ans=num;}
if(sum==Max && num<ans) ans=num;
if(k>) return ;
LL temp=num;
for(int i=;i<=t;i++)
{
if(temp*prime[k]>n) break;
temp*=prime[k];
dfs(sum*(i+),temp,k+,i);
}
} int main()
{
while(~scanf("%lld",&n))
{
ans=n;Max=;
dfs(,,,);
printf("%lld\n",ans);
}
return ;
}

zoj 2562 反素数的更多相关文章

  1. zoj 1562 反素数 附上个人对反素数性质的证明

    反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...

  2. ZOJ 2562 HDU 4228 反素数

    反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...

  3. ZOJ 2562 More Divisors(高合成数)

    ZOJ 2562 More Divisors(高合成数) ACM 题目地址:ZOJ 2562 More Divisors 题意:  求小于n的最大的高合成数,高合成数指一类整数,不论什么比它小的自然数 ...

  4. poj 2886 线段树的更新+反素数

    Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...

  5. ZOJ- 2562 反素数使用

    借用了下东北师大ACM的反素数模版. 本来我是在刷线段树的,有一题碰到了反素数,所以学了一下..有反素数的存在,使得一个x ,使得x的约数个数,在1 到 x的所有数里面,是最大的. 这里面还涉及安叔那 ...

  6. 【POJ2886】Who Gets the Most Candies?-线段树+反素数

    Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...

  7. Prime & 反素数plus

    题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...

  8. BZOJ 1053 & 反素数

    题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...

  9. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

随机推荐

  1. Python学习日志_2017/09/09

    今天早晨学习<Head First HTML and CSS>.随着内容逐渐深入,知识量逐渐增加,今天早晨三个小时学习了一章:<Html的基本元素>,学到了不少的东西.比如,什 ...

  2. ActiveAndroid问题no such table解决总结

     android.database.sqlite.SQLiteException: no such table  at android.database.sqlite.SQLiteConnection ...

  3. SQLITE-更新查询

    SQLite -更新查询 SQLite UPDATE查询用于修改现有表中的记录.您可以使用WHERE子句与更新查询更新选中的行,否则会被更新的所有行. 语法: UPDATE查询的WHERE子句的基本语 ...

  4. ansible 调优

    1.设置ssh长链接ssh_args = -C -o ControlMaster=auto -o ControlPersist=5d 2.开启pipelining开启pipelining 需要被控制机 ...

  5. StringMVCWeb接受前台值的几种方式

    这些决定与request   header   的Content-Type属性 1.通过@RequestParam @RequestParam Map<String, Object> pa ...

  6. PAT (Basic Level) Practise (中文)-1034. 有理数四则运算(20)

    PAT (Basic Level) Practise (中文)-1034. 有理数四则运算(20)  http://www.patest.cn/contests/pat-b-practise/1034 ...

  7. prototype中的ajax异步加载

    jquery前台处理: var param = {a:a}; $.post("*.do",param,function(data) { var columHtml = " ...

  8. Log4J的配置与使用详解

    一.简介 Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护 ...

  9. 51nod 1135 原根 (数论)

    题目链接 建议与上一篇欧拉函数介绍结合食用. 知识点:1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数)   例如: 2^2≡1(mod3),2对模3的阶为2; ...

  10. 【计数】51nod1677 treecnt

    要将答案看做是小问题的贡献和 Description 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k ...