zoj 2562 反素数
题目大意:求n范围内最大的反素数(反素数定义:f(x)表示x的因子数,f(x)>f(x1) (0<x1<x))
x用质因数形式为:x=a1^p1*a2^p2......an^pn(ai为素数),那么一个数的因子个数f(x)=(p1+1)*(p2+1)*....*(pn+1)
反素数的性质有:x=a1^p1*a2^p2......an^pn,p1>=p2>=......>=pn
证明:若pi<pj(i<j),那么存在与它因子个数相等的x1且x1<x,与反素数的定义矛盾。
前十四个素数每个素数用一次的乘积已经大于10^16,所以枚举前十四个素数就可以了。
#include<iostream>
#include<cstdio>
using namespace std; typedef long long LL;
int prime[]={,,,,,,,,,,,,,,};
LL n,ans,Max; void dfs(LL sum,LL num,LL k,LL t)
{
if(sum>Max) {Max=sum;ans=num;}
if(sum==Max && num<ans) ans=num;
if(k>) return ;
LL temp=num;
for(int i=;i<=t;i++)
{
if(temp*prime[k]>n) break;
temp*=prime[k];
dfs(sum*(i+),temp,k+,i);
}
} int main()
{
while(~scanf("%lld",&n))
{
ans=n;Max=;
dfs(,,,);
printf("%lld\n",ans);
}
return ;
}
zoj 2562 反素数的更多相关文章
- zoj 1562 反素数 附上个人对反素数性质的证明
反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...
- ZOJ 2562 HDU 4228 反素数
反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...
- ZOJ 2562 More Divisors(高合成数)
ZOJ 2562 More Divisors(高合成数) ACM 题目地址:ZOJ 2562 More Divisors 题意: 求小于n的最大的高合成数,高合成数指一类整数,不论什么比它小的自然数 ...
- poj 2886 线段树的更新+反素数
Who Gets the Most Candies? Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , ...
- ZOJ- 2562 反素数使用
借用了下东北师大ACM的反素数模版. 本来我是在刷线段树的,有一题碰到了反素数,所以学了一下..有反素数的存在,使得一个x ,使得x的约数个数,在1 到 x的所有数里面,是最大的. 这里面还涉及安叔那 ...
- 【POJ2886】Who Gets the Most Candies?-线段树+反素数
Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
随机推荐
- 允许Java App(applet)粘贴方法
修改安全策略文件: "java.policy" JRE6的路径在:"C:\Program Files (x86)\Java\jre6\lib\security" ...
- Sublime Text3括号配对与代码包围效果BracketHighlighter
就这么看json等配置文件,太难了,我们需要括号匹配插件BracketHighlighter,但是装完以后只有下划线提示不明显,需要配置 Bracket Settings-Default 文件 ...
- Gradle环境下导出Swagger为PDF
更多精彩博文,欢迎访问我的个人博客 说明 我个人是一直使用Swagger作为接口文档的说明的.但是由于在一些情况下,接口文档说明需要以文件的形式交付出去,如果再重新写一份文档难免有些麻烦.于是在网上看 ...
- Codeforces Round #275 (Div. 2)-A. Counterexample
http://codeforces.com/contest/483/problem/A A. Counterexample time limit per test 1 second memory li ...
- Linux C++/C开发所必需的一系列工具
系统平台下的开发工具.开发环境各有不同.Linux C++/C开发所必需的一系列工具: 1. vi(vim)文本编辑器一个UNIX世界标准的文本编辑器,简约而强大,不论作为开发人员还是系统管理员,熟练 ...
- shell脚本,按行读取文件的几种方法。
第一种方法用while实现按读取文件.[root@localhost wyb]# cat a.txt 第一行 aaaaaa 第二行 bbbbbb 第三行 cccccc 第四行 dddddd 第五行 e ...
- The Fourth Day
迭代器 迭代器:迭代的工具 .什么是迭代:指的是一个重复的过程,每次重复称为一次迭代,并且每次重复的结果是下一次重复的初始值 例: while True: print('====>'') l=[ ...
- vue源码构建代码分析
这是xue源码学习记录,如有错误请指出,谢谢!相互学习相互进步. vue源码目录为 vue ├── src #vue源码 ├── flow #flow定义的数据类型库(vue通过flow来检测数据类型 ...
- python面向对象(C3算法)(六)
1. 了解python2和python3类的区别 python2在2.3之前使用的是经典类, 2.3之后, 使用的是新式类 2. 经典类的MRO 树形结构的深度优先遍历 -> 树形结构遍历 cl ...
- Pandas中loc,iloc与直接切片的区别
最近使用pandas,一直搞不清楚其中几种切片方法的区别,今天专门看了一下. 0. 把Series的行index或Dataframe的列名直接当做属性来索引. 如: s.index_name df.c ...