【题目分析】

考虑斜率为0和斜率不存在的两条线上只能看到3人。

其余的人能被看见,当且仅当gcd(x,y)=1 ,然后拿卷积算一算

发现就是欧拉函数的前缀和的二倍。

注意2的情况要特判。

【代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 50005
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
int n; int phi[maxn],pr[maxn],top=0; void init()
{
F(i,2,maxn-1)
{
if (!phi[i]) pr[++top]=i,phi[i]=i-1;
for (int j=1;j<=top&&i*pr[j]<maxn;++j)
{
if (i%pr[j]==0) {phi[i*pr[j]]=pr[j]*phi[i]; break;}
else phi[i*pr[j]]=phi[i]*phi[pr[j]];
}
}
} int main()
{
init();
int ans=0;
scanf("%d",&n);
F(i,1,n-1) ans+=phi[i]*2;
if (n==2) ans++; ans+=3;
printf("%d\n",ans);
}

  

BZOJ 2190 [SDOI2008]仪仗队 ——Dirichlet积的更多相关文章

  1. BZOJ 2190: [SDOI2008]仪仗队

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2689  Solved: 1713[Submit][Statu ...

  2. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  3. bzoj 2190: [SDOI2008]仪仗队 线性欧拉函数

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为 ...

  4. bzoj 2190 [SDOI2008]仪仗队(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2190 [题意] n*n的正方形,在(0,0)格点可以看到的格子数目. [思路] 预处理 ...

  5. 【刷题】BZOJ 2190 [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  6. [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...

  7. BZOJ——2190: [SDOI2008]仪仗队

    思路: 我们将其所在的位置设为(0,0),那么如果存在一个点(x,y),且有gcd(x,y)=k(k!=1),那么点(x/k,y/k)一定会将(x,y)挡住.而如果k=1,那么点(x,y)就一定会被看 ...

  8. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  9. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

随机推荐

  1. 保存 http request 的数据到数据库表

    开发需求:把 http request 对象的数据保存到数据库中 第一步:编写 RequestInfoService 类,保存方法名是 saveRequestInfo // 保存request信息 p ...

  2. ThreadLocal使用,应用场景,源码实现,内存泄漏

    首先,ThreadLocal 不是用来解决共享对象的多线程访问问题的,一般情况下,通过ThreadLocal.set() 到线程中的对象是该线程自己使用的对象,其他线程是不需要访问的,也访问不到的.各 ...

  3. Date/Time Functions and Operators (Postgres)

            http://www.postgresql.org/docs/9.1/static/functions-datetime.html   Search Documentation:  H ...

  4. Java代理设计模式(Proxy)的四种具体实现:静态代理和动态代理

    面试问题:Java里的代理设计模式(Proxy Design Pattern)一共有几种实现方式?这个题目很像孔乙己问"茴香豆的茴字有哪几种写法?" 所谓代理模式,是指客户端(Cl ...

  5. vue2.0动画

    相对于vue1.0来说,vue2.0的动画变化还是挺大的, 在1.0中,直接在元素中加 transition ,后面跟上名字. 而在vue2.0中,需要把设置动画的元素.路由放在<transit ...

  6. Centos7 安装python3.5.3

    使用root用户安装:切换到root用户 su 回车,然后输入密码,切换到root用户. 新建一个脚本,如installPython.sh #!/bin/bash yum -y install zli ...

  7. web框架 http协议

    http 协议是超文本传输协议,位于osi七层的应用层,协议规定的就是请求与响应双方的一个消息格式,请求(请求行,请求头,空行,请求数据,请求行--请求方式URL协议版本\r\n请求头--user-a ...

  8. shelll脚本,常见的脚本题目。

    [root@localhost wyb]# cat 2quan.sh #!/bin/bash #写一个脚本,先要求输入用户名,然后让他输入一个数字,输的如果是数字给输出yes,不是数字,输出no #然 ...

  9. 什么是二维数组?二维遍历?Java二维数组制作图片迷宫 使用如鹏游戏引擎制作窗口界面 附带压缩包下载,解压后双击start.bat启动

    什么是二维数组? 数组当中放的还是数组 int [][] arr=new int[3][2]; 有3个小箱子,每个箱子2个格子. 看结果? int [][] arr=new int[3][2]; Sy ...

  10. UVa-213-信息解码

    这题的话,我们只要理解题意,应该就不算很难. 我们可以开一个二维数组,用来存放对应的编码字符,第一个下表是length,第二个下标是value,这样一来,我们在读入数据的时候就进行处理,然后想要使用的 ...