HDU 6397 组合数学+容斥 母函数
Character Encoding
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1473 Accepted Submission(s): 546
For example, in ASCII encoding system, the word wdy is encoded as [119, 100, 121], while jsw is encoded as [106, 115, 119]. It can be noticed that both 119+100+121=340 and 106+115+119=340, thus the sum of the encoded numbers of the two words are equal. In fact, there are in all 903 such words of length 3 in an encoding system of alphabet size 128 (in this example, ASCII). The problem is as follows: given an encoding system of alphabet size n where each character is encoded as a number between 0 and n−1 inclusive, how many different words of length m are there, such that the sum of the encoded numbers of all characters is equal to k?
Since the answer may be large, you only need to output it modulo 998244353.
Each test case includes a line of three integers n,m,k (1≤n,m≤105,0≤k≤105), denoting the size of the alphabet of the encoding system, the length of the word, and the required sum of the encoded numbers of all characters, respectively.
It is guaranteed that the sum of n, the sum of m and the sum of k don't exceed 5×106, respectively.
容斥写法
x1+x2+...+xm = k (xi>=0) 共有C(k+m-1,m-1) 种 插板法
如果有c个违反条件 把每一个违反条件的x减去n
x1'+x2'+x3'+x4'+x5'+...+xn'= k-c*n xi>=0 共有 C(k-c*n+m-1,m-1)种
容斥系数 变量选法
ans = (-1)^c * C(m,c) * C(k-cn+m-1,m-1)
母函数写法
1+x+x^2+...+x^(n-1)=(1-x^n)/(1-x)
(1+x+x^2+...+x^(n-1))^m
=(1-x^n)^m/(1-x)^m
=(1-x^n)^m*(1-x)^(-m)
=(1-x^n)^m*(sum_ (x^i)*C(m+i-1,m-1)) //上篇博客说的核武器。。。。
ans=x^k 的系数
左边二项式展开 按照每个i 右边应该有k-ni
ans= sum (-1)^i*C(m,i)*C(m+k-n*I-1,m-1)
左边 x^n*i 右边x^(k-n*i)
系数(-1)^i*C(m,i) 系数C(m+k-n*I-1,m-1)
AC代码
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
using namespace std;
const int maxn= 3e5+;
const int inf = 0x3f3f3f3f,mod=;
typedef long long ll;
ll fac[maxn],inv[maxn];
void init()
{
fac[]=fac[]=;
inv[]=inv[]=;
for(ll i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(ll i=;i<maxn;i++)
inv[i]=inv[i-]*inv[i]%mod;
}
ll C(ll x,ll y)
{
if(y>x) return ;
if(y==||x==) return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
ll n,m,k,t;
init();
cin>>t;
while(t--)
{
cin>>n>>m>>k;
if(k==)
{
cout<<<<endl;
continue;
}
else if((n-)*m<k)
{
cout<<<<endl;
continue;
}
int c=min(k/n,m);
ll ans=;
for(int i=;i<=c;i++)
{
if(i%==)
ans=(ans+C(m,i)*C(k-i*n+m-,m-)%mod)%mod;
else
ans=(ans-C(m,i)*C(k-i*n+m-,m-)%mod+mod)%mod;
}
cout<<ans<<endl;
}
}
HDU 6397 组合数学+容斥 母函数的更多相关文章
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- HDU 6397 Character Encoding (组合数学 + 容斥)
题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- hdu 5212 反向容斥或者莫比
http://acm.hdu.edu.cn/showproblem.php?pid=5212 题意:忽略.. 题解:把题目转化为求每个gcd的贡献.(http://www.cnblogs.com/z1 ...
- ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...
随机推荐
- php中include_path配置
在php.ini中可配置include_path来达到在任何文件中都可以直接引入该目录下文件 include_path = ".:/usr/share/php:/var/www/phpxwl ...
- findFile的用法
=============================================== @echo off echo **No Options: for /f %%a in (&q ...
- vue项目中常用的一些公共方法
//校验手机号码 export function isSpecialPhone(num) { return /^1[2,3,4,5,7,8]\d{9}$/.test(num) } //校验中英文姓名 ...
- mysql登录(linux)
一.修改配置文件 查询路径 find / -name my.cnf 修改文件 vi my.cnf [mysqld]下面加上skip-grant-tables 二.登录数据库 重启mysql servi ...
- 树状数组 || POJ 3321 Apple Tree
一道dfs序+树状数组的题 因为并没有get到dfs序以及对树状数组也不熟练卡了很久orz dfs序: in和out是时间戳 dfs序可以将树转化成为一个序列,满足区间 -> 子树 然后就可以用 ...
- MySQL-05 用户管理
学习目标 权限表及其用法 账户管理 权限管理 访问控制 权限表 MySQL权限表存放在MySQL数据库里,由mysql_install_db脚本初始化.这些MySQL权限表分别为user.db.pro ...
- python基础:函数传参、全局变量、局部变量、内置函数、匿名函数、递归、os模块、time模块
---恢复内容开始--- 一.函数相关: 1.1位置参数: ef hello(name,sex,county='china'): pass #hello('hh','nv') #位置参数.默认参数 1 ...
- POJ-1011(sticks,深搜)
Description George took sticks of the same length and cut them randomly until all parts became at mo ...
- 0xC00000FD: Stack overflow (parameters: 0x00000000, 0x003E2000).错误
这个错误是“栈溢出”,每个线程的栈空间默认是1MB,局部变量(非静态)都在栈中分配,当使用的局部变量所需空间过多时,就会溢出.你检查一下程序,看看哪些函数中定义了大数组,把大数组改成用new分配,函数 ...
- 条款13:以对象管理资源(use objects to manage resources)
NOTE: 1.为防止资源泄漏,请使用RAII对象,它们在构造函数中获得资源并在析构函数中释放资源. 2.两个常被使用的RAII classes 分别是 trl::shared_ptr 和 auto_ ...