HDU 6397 组合数学+容斥 母函数
Character Encoding
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1473 Accepted Submission(s): 546
For example, in ASCII encoding system, the word wdy is encoded as [119, 100, 121], while jsw is encoded as [106, 115, 119]. It can be noticed that both 119+100+121=340 and 106+115+119=340, thus the sum of the encoded numbers of the two words are equal. In fact, there are in all 903 such words of length 3 in an encoding system of alphabet size 128 (in this example, ASCII). The problem is as follows: given an encoding system of alphabet size n where each character is encoded as a number between 0 and n−1 inclusive, how many different words of length m are there, such that the sum of the encoded numbers of all characters is equal to k?
Since the answer may be large, you only need to output it modulo 998244353.
Each test case includes a line of three integers n,m,k (1≤n,m≤105,0≤k≤105), denoting the size of the alphabet of the encoding system, the length of the word, and the required sum of the encoded numbers of all characters, respectively.
It is guaranteed that the sum of n, the sum of m and the sum of k don't exceed 5×106, respectively.
容斥写法
x1+x2+...+xm = k (xi>=0) 共有C(k+m-1,m-1) 种 插板法
如果有c个违反条件 把每一个违反条件的x减去n
x1'+x2'+x3'+x4'+x5'+...+xn'= k-c*n xi>=0 共有 C(k-c*n+m-1,m-1)种
容斥系数 变量选法
ans = (-1)^c * C(m,c) * C(k-cn+m-1,m-1)
母函数写法
1+x+x^2+...+x^(n-1)=(1-x^n)/(1-x)
(1+x+x^2+...+x^(n-1))^m
=(1-x^n)^m/(1-x)^m
=(1-x^n)^m*(1-x)^(-m)
=(1-x^n)^m*(sum_ (x^i)*C(m+i-1,m-1)) //上篇博客说的核武器。。。。
ans=x^k 的系数
左边二项式展开 按照每个i 右边应该有k-ni
ans= sum (-1)^i*C(m,i)*C(m+k-n*I-1,m-1)
左边 x^n*i 右边x^(k-n*i)
系数(-1)^i*C(m,i) 系数C(m+k-n*I-1,m-1)
AC代码
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl;
using namespace std;
const int maxn= 3e5+;
const int inf = 0x3f3f3f3f,mod=;
typedef long long ll;
ll fac[maxn],inv[maxn];
void init()
{
fac[]=fac[]=;
inv[]=inv[]=;
for(ll i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
for(ll i=;i<maxn;i++)
inv[i]=inv[i-]*inv[i]%mod;
}
ll C(ll x,ll y)
{
if(y>x) return ;
if(y==||x==) return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
ll n,m,k,t;
init();
cin>>t;
while(t--)
{
cin>>n>>m>>k;
if(k==)
{
cout<<<<endl;
continue;
}
else if((n-)*m<k)
{
cout<<<<endl;
continue;
}
int c=min(k/n,m);
ll ans=;
for(int i=;i<=c;i++)
{
if(i%==)
ans=(ans+C(m,i)*C(k-i*n+m-,m-)%mod)%mod;
else
ans=(ans-C(m,i)*C(k-i*n+m-,m-)%mod+mod)%mod;
}
cout<<ans<<endl;
}
}
HDU 6397 组合数学+容斥 母函数的更多相关文章
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- HDU 6397 Character Encoding (组合数学 + 容斥)
题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- hdu 5212 反向容斥或者莫比
http://acm.hdu.edu.cn/showproblem.php?pid=5212 题意:忽略.. 题解:把题目转化为求每个gcd的贡献.(http://www.cnblogs.com/z1 ...
- ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...
随机推荐
- iOS 网络开发
http://www.cnblogs.com/kenshincui/p/4042190.html
- HttpServletResponse 的状态码
public static final int SC_ACCEPTED 202 public static final int SC_BAD_GATEWAY 502 public static ...
- SAS Fuctions
1. monotonic(), 单调递增函数.返回一列变量的序列等,类似于_N_ . 2. index v indexw: INDEX Function Searches a character ex ...
- Linux OpenGL 实践篇-11-shadow
OpenGL 阴影 在三维场景中,为了使场景看起来更加的真实,通常需要为其添加阴影,OpenGL可以使用很多种技术实现阴影,其中有一种非常经典的实现是使用一种叫阴影贴图的实现,在本节中我们将使用阴影贴 ...
- c语言 预处理的使用 宏展开下的#,##
1. #include 包含头文件 2.define 宏定义(可以理解为替换,不进行语法检查) 写法 #define 宏名 宏体 加括号 #define ABC (5+3) #define AB ...
- axure使用经验
泛化不常用======伸展也是拉动原件收缩也是拉动原件====== 动态模板相互影响(有的时候会出现这个问题,只需要设置两者的高度,不让两者有包含关系(一点点可以有):====== 实现高级菜单栏(同 ...
- vs 2012安装ASP.NET MVC5
VS2012能使用MVC5开发,但VS2012不自带MVC5,需要安装“用于 Visual Studio 2012 的 ASP.NET 和 Web 工具 2013.1” 从下面提供的链接下载安装: h ...
- 【2018 CCPC网络赛】1003 - 费马小定理
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6440 这题主要是理解题意: 题意:定义一个加法和乘法,使得 (m+n)p = mp+np; 其中给定 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- [POJ] 2223 Muddy Fields
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11490 Accepted: 4270 Description Rain has ...