首先题目中给出的代码打错了,少了个等于号,应该是

G=0;
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
{
G = (G + lcm(i,j)) % 1000000007;
}

然后就是大力推公式:

\[\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)
\]

\[=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)}
\]

\[=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]\frac{ij}{d}
\]

\[=\sum_{d=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}[gcd(i,j)==d]ijd
\]

然后需要一个打表找规律,发现\( \sum_{i=1}{n}\sum_{j=1}{i}[gcd(i,j)1]ij=\sum_{i=1}^{n}i\frac{i\phi(i)+[i1]}{2} \)

\[=\sum_{d=1}^{n}d((2)\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i\frac{i\phi(i)+[i==1]}{2})-1)
\]

\[=\sum_{d=1}^{n}d((\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i^2\phi(i)+[i==1])-1)
\]

\[=\sum_{d=1}^{n}d\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i^2\phi(i)
\]

然后就可以递归使用杜教筛了,关于用杜教筛求\( \sum_{i=1}{n}i2\phi(i) \)的前缀和,有如下推导:

\[g(n)=\sum_{i=1}^{n}i^2\sum_{d=1}^{i}[d|i]\phi(d)=\sum_{i=1}^{n}i^3=\frac{n^2(n+1)^2}{4}
\]

\[s(n)=\sum_{i=1}^{n}i^2\phi(i)
$$那么把g展开:
\]

g(n)=\sum_{i=2}{n}i2\sum_{d=1}^{i-1}[d|i]\phi(d)+s(n)

\[\]

s(n)=g(n)-\sum_{i=2}{n}i2\sum_{d=1}^{i-1}[d|i]\phi(d)

\[\]

=g(n)-\sum_{k=2}{n}k2\sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor}d\phi(d)

\[\]

=g(n)-\sum_{k=2}{n}k2*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[\]

=\frac{n2(n+1)2}{4}-\sum_{k=2}{n}k2*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[这就是标准的杜教筛递归子问题形式了,直接求解即可。
```cpp
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=1000005,m=1000000,inv2=500000004,inv4=250000002,inv6=166666668,mod=1e9+7;
long long n,phi[N],q[N],tot,ans,ha[N];
bool v[N];
long long wk1(long long x)
{
if(x>=mod)
x-=mod;
return x%mod*(x+1)%mod*inv2%mod;
}
long long wk2(long long x)
{
if(x>=mod)
x-=mod;
return x%mod*(x+1)%mod*(x%mod*2+1)%mod*inv6%mod;
}
long long wk3(long long x)
{
if(x>=mod)
x-=mod;
return x%mod*x%mod*(x+1)%mod*(x+1)%mod*inv4%mod;
}
long long slv(long long x)
{
if(x<=m)
return phi[x];
if(ha[n/x])
return ha[n/x];
long long re=wk3(x);
for(long long i=2,la;i<=x;i=la+1)
{
la=x/(x/i);
re=(re-(wk2(la)-wk2(i-1))%mod*slv(x/i)%mod)%mod;
}
return ha[n/x]=re;
}
int main()
{
phi[1]=1;
for(int i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(int j=1;j<=tot&&i%mod*q[j]<=m;j++)
{
int k=i%mod*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]%mod*q[j];
break;
}
phi[k]=phi[i]%mod*(q[j]-1);
}
}
for(int i=1;i<=m;i++)
phi[i]=(phi[i]%mod*i%mod*i%mod+phi[i-1])%mod;
scanf("%lld",&n);
for(long long i=1,la;i<=n;i=la+1)
{
la=n/(n/i);
ans=(ans+(wk1(la)-wk1(i-1))%mod*slv(n/i)%mod)%mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
return 0;
}
```\]

51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】的更多相关文章

  1. 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)

    题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)   ∑i=1n​∑j=1n​lcm(i,j) =∑i=1n∑j= ...

  2. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  3. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  4. bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】

    一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...

  5. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  6. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  7. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  8. 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

  9. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

随机推荐

  1. 利用Cufon技术渲染文字的简单示例

    Cufon是一种能够根据指定的字体渲染文字的技术.今天试用了下,主要有几个步骤: 1.下载Cufon.js(http://cufon.shoqolate.com/generate/) 2.获取需要渲染 ...

  2. [Bzoj1009][HNOI2008]GT考试(KMP)(矩乘优化DP)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4309  Solved: 2640[Submit][Statu ...

  3. loj6157 A^B Problem (并查集)

    题目: https://loj.ac/problem/6157 分析: 这种树上异或,一般是采用分位考虑,但是这题即使分位,也会发现非常不好处理 这里考虑维护一个点到其根的路径的异或值 用并查集去检测 ...

  4. 【APUE】信号量、互斥体和自旋锁

    http://www.cnblogs.com/biyeymyhjob/archive/2012/07/21/2602015.html http://blog.chinaunix.net/uid-205 ...

  5. linux上安装启动elasticsearch-5.5.1完整步骤

    linux上安装启动elasticsearch-5.5.1完整步骤 学习了:https://blog.csdn.net/hingcheung/article/details/77144574 http ...

  6. OSWorkFlow流程配置文件具体解释

    AbstractWorkflow>> osworkflow中有关工作流流转的全部核心代码都在AbstractWorkflow中.BasicWorkflow就是派生自它,只是这个BasicW ...

  7. 如何将Python的py程序打包成跨平台的exe文件

    在编写了自己的第一个可以爬写网页源代码的程序之后,发现如果在没有安装了pythonLDLE程序的计算机上根本就跑不出来.所以开始寻找可以将程序打包成跨平台运行的exe文件. 经过自己费力的谷歌没有一个 ...

  8. Hibernate也须要呵护——Hibernate的泛型DAO

    众所周之.面向对象的基础是抽象.也能够说,抽象促使编程在不断发展. 对于数据库的訪问,以前写过HqlHelper.EFHelper.编写Spring+Hibernate框架下的应用.也相同离不了编写一 ...

  9. Why Do Microservices Need an API Gateway?

    Why Do Microservices Need an API Gateway? - DZone Integration https://dzone.com/articles/why-do-micr ...

  10. 借助ltp 逐步程序化实现规则库 文本生成引擎基于规则库和业务词库 去生成文本

    [哪个地方做什么的哪家靠谱?地名词库行业.业务词库]苏州做网络推广的公司哪家靠谱?苏州镭射机维修哪家最专业?昆山做账的公司哪家比较好广州称重灌装机生产厂家哪家口碑比较好 [含有专家知识]郑州律师哪个好 ...