题目链接:https://vjudge.net/problem/UVA-10480

题解:

实际就是求最小割集。

1.什么是网络流图的“割”?答:一个边的集合,使得网络流图删除这些边之后,点被分成两部分S和T, 且源点位于S中, 汇点位于T中。注意:不能存在独立于S和T的点。

2.对于最小割集中的边,它在残余网络中容量为0。

3.从源点出发,沿着有残余容量的边走,能够访问到的点都属于S集合,否则属于T集合。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} bool vis[MAXN];
void dfs(int u, int n)
{
vis[u] = true;
for(int v = ; v<n; v++)
if(maze[u][v]-flow[u][v] && !vis[v])
dfs(v, n);
} int edge[MAXN*MAXN][];
int main()
{
int n, m;
while(scanf("%d%d", &n, &m)&&(n||m))
{
memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++)
{
int u, v, w;
scanf("%d%d%d", &u,&v,&w);
edge[i][] = --u; edge[i][] = --v;
maze[u][v] = w;
maze[v][u] = w;
} int start = , end = ;
sap(start, end, n); memset(vis, false, sizeof(vis));
dfs(, n);
for(int i = ; i<=m; i++)
{
int u = edge[i][];
int v = edge[i][];
if( (vis[u] && !vis[v]) || (!vis[u] && vis[v]) )
printf("%d %d\n", u+, v+);
}
printf("\n");
}
}

UVA10480 Sabotage —— 最小割最大流的更多相关文章

  1. UVA10480:Sabotage(最小割+输出)

    Sabotage 题目链接:https://vjudge.net/problem/UVA-10480 Description: The regime of a small but wealthy di ...

  2. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  3. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  4. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  5. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  6. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  7. HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)

    题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

  8. 最小割最大流定理&残量网络的性质

    最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...

  9. Destroying The Graph 最小点权集--最小割--最大流

    Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), ...

随机推荐

  1. ElasticSearch聚合入门(续)

    主要理解聚合中的terms. 参考:http://www.cnblogs.com/xing901022/p/4947436.html Terms聚合 记录有多少F,多少M { "size&q ...

  2. BZOJ4725: [POI2017]Reprezentacje ró?nicowe

    $n \leq 1e5$,$x \leq 1e9$. 1e9呵呵,暴力处理$a_n$的前几项直到1e9.然后处理出差的数列,每次在这里面找,找得到就回答,找不到,那有贡献的只有$a_i-a_{i-1} ...

  3. 「CodePlus 2018 4 月赛」最短路

    $n \leq 100000$,$m \leq 500000$的有向图,两点之间还可以以$a \ \ xor \ \ b$的代价从$a$到$b$,问$s$到$t$的最短路. 被自己蠢哭QAQ 首先两个 ...

  4. spl_autoload_register() && __autoload函数

    一.__autoload 这是一个自动加载函数,在PHP5中,当我们实例化一个未定义的类时,就会触发此函数. 在index.php中,由于没有包含test.class.php,在实例化printit时 ...

  5. Iass、Pass、SasS三种云服务区别?

    Iass.Pass.SasS三种云服务区别 我们可以把云计算理解成一栋大楼,而这栋楼又可以分为顶楼.中间.低层三大块.那么我们就可以把Iass(基础设施).Pass(平台).Sass(软件)理解成这栋 ...

  6. [Bzoj3206][Apio2013]道路费用(kruscal)(缩点)

    3206: [Apio2013]道路费用 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 536  Solved: 252[Submit][Status ...

  7. 普元OA平台介绍

    Primeton Portal提供了访问企业信息资源的统一入口,是一个面向企业的内容管理.信息发布和集成展现平台,提供了单点登录.内容管理.信息发布.应用集成.个性化等功能,能够帮助企业快速搭建一个集 ...

  8. Base64的空格 + 问题...

    BASE64  通过url传递到后台 加号变空格的处理方法 解决方法: 前台处理:str.replace("+", "%2B"); (错误) <scrip ...

  9. 【c专家编程】分析c语言的声明

    联合: 在结构中,每个成员依次存储,而在联合中,所有成员都从偏移地址零开始存储,联合一般被用来节省空间,用法和struct相同. union bits32_tag { int whole; // 一个 ...

  10. [Javascript] Replicate JavaScript Constructor Inheritance with Simple Objects (OLOO)

    Do you get lost when working with functions and the new keyword? Prototypal inheritance can be compl ...