CH 5102 Mobile Service



$ solution: $

这道题很容易想到DP,因为题目里已经说了要按顺序完成这些请求。所以我们可以线性DP,但是这一题的状态不是很好设,因为数据范围有点大,而且我们需要记录三个人的位置信息。但是我们可以发现完成一个请求时三个人中必然有一人在这个请求的位置,所以我们可以根据请求来判断其中一人的位置,这样我们就只需要记录其他两个人了。而复杂度似乎刚好够用。

设 $ F[i][j][k] $ 表示已经处理完第 $ i $ 个请求,且另外两个人分别在 $ j $ 和 $ k $ 的的最小花费,然后我们可以用这个状态向后转移:

if(j!=a[i+1]&&k!=a[i+1])f[i+1][j][k]=min(f[i+1][j][k],f[i][j][k]+d[a[i]][a[i+1]]);
if(a[i]!=a[i+1]&&k!=a[i+1])f[i+1][a[i]][k]=min(f[i+1][a[i]][k],f[i][j][k]+d[j][a[i+1]]);
if(a[i]!=a[i+1]&&j!=a[i+1])f[i+1][a[i]][j]=min(f[i+1][a[i]][j],f[i][j][k]+d[k][a[i+1]]);

需要注意题目说了不能有两个人在同一个位置!



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int m,n,ans;
int a[1005];
int d[205][205];
int f[1003][203][203]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
m=qr(); n=qr(); a[0]=1;
for(rg i=1;i<=m;++i)
for(rg j=1;j<=m;++j)
d[i][j]=qr();
for(rg i=1;i<=n;++i) a[i]=qr();
for(rg i=0;i<=n;++i)
for(rg j=1;j<=m;++j)
for(rg k=1;k<=m;++k)
f[i][j][k]=1e7;
f[0][2][3]=0;
for(rg i=0;i<n;++i){
for(rg j=1;j<=m;++j){
for(rg k=1;k<=m;++k){
if(f[i][j][k]<1e7){
if(j!=a[i+1]&&k!=a[i+1])f[i+1][j][k]=min(f[i+1][j][k],f[i][j][k]+d[a[i]][a[i+1]]);
if(a[i]!=a[i+1]&&k!=a[i+1])f[i+1][a[i]][k]=min(f[i+1][a[i]][k],f[i][j][k]+d[j][a[i+1]]);
if(a[i]!=a[i+1]&&j!=a[i+1])f[i+1][a[i]][j]=min(f[i+1][a[i]][j],f[i][j][k]+d[k][a[i+1]]);
}
}
}
} ans=1e7;
for(rg i=1;i<=m;++i)
for(rg j=1;j<=m;++j)
ans=min(ans,f[n][i][j]);
printf("%d\n",ans);
return 0;
}

CH 5102 Mobile Service(线性DP)的更多相关文章

  1. [tyvj 1061] Mobile Service (线性dp 滚动数组)

    3月15日第一题! 题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须 ...

  2. CH5102 Mobile Service【线性dp】

    5102 Mobile Service 0x50「动态规划」例题 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个 ...

  3. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  4. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

  5. cf909C 线性dp+滚动数组好题!

    一开始一直以为是区间dp.. /* f下面必须有一个s 其余的s可以和任意f进行匹配 所以用线性dp来做 先预处理一下: fffssfsfs==>3 0 1 1 dp[i][j] 表示第i行缩进 ...

  6. 2018.09.21 codeforces1051D. Bicolorings(线性dp)

    传送门 sb线性DP. f[i][j][0/1/2/3]f[i][j][0/1/2/3]f[i][j][0/1/2/3]表示前i列j个连通块且第i列状态为00/01/10/11时的方案总数. 这个显然 ...

  7. CH5102 Mobile Service

    CH5102 Mobile Service 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去.某一时刻只有一 ...

  8. CH 5302 金字塔(区间DP)

    CH 5302 金字塔 \(solution:\) 很神奇的一道题目,当时看到还以为是一道字符串求回文子串的题目.但是数据范围很小,而且只知道回文串也不好做.但是我们观察可得,如果是深度搜索便利,那么 ...

  9. CH 5105 Cookies(贪心+DP)

    \(CH 5105 Cookies\) \(solution:\) 真是好题一道!这道题我想了很久很久,就得这一题可以直接完全贪心,可惜最后还是失败了,但是对贪心的深入思考也换来了一个最优解方案.然后 ...

随机推荐

  1. 【Luogu】P1578奶牛浴场(DP,枚举)

    题目链接 枚举极大子矩形.详情请见本题题解:I_AM_HelloWord 代码如下 #include<cstdio> #include<cctype> #include< ...

  2. 【Luogu】P3116会议时间(拓扑排序,DP)

    题目链接 本题使用拓扑排序来规划DP顺序.设s[i][j]表示i步是否能走到j这个点,e[i][j]表示i步是否能走到j这个点——用第二条路径.因为要满足无后效性和正确性,只有第i个点已经全部更新完毕 ...

  3. HDU 4609 3-idiots ——FFT

    [题目分析] 一堆小木棍,问取出三根能组成三角形的概率是多少. Kuangbin的博客中讲的很详细. 构造一个多项式 ai=i的个数. 然后卷积之后去重. 统计也需要去重. 挺麻烦的一道题. #inc ...

  4. SQL Server中的@@ROWCOUNT

    SQL Server中@@ROWCOUNT返回受上一语句影响的行数,返回值类型为 int 整型. 如果行数大于 20 亿,则需要使用 ROWCOUNT_BIG. @@ROWCOUNT和@@ERROR变 ...

  5. LA 并查集路径压缩

    题目大意:有n个节点,初始时每个节点的父亲节点都不存在.有两种操作 I u v:把点节点u的父亲节点设为v,距离为|u-v|除以1000的余数.输入保证执行指令前u没有父亲节点. E u:询问u到根节 ...

  6. Elasticsearch 禁止Body覆盖URL中的参数

    以通过设置参数rest.action.multi.allow_explicit_index为false来关闭覆盖功能. 这个设置会对所有的节点起作用,设置方法如下: 在config/elasticse ...

  7. hdu 4952

    Number Transformation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot ...

  8. poj 3461 hash解法

    字符串hash https://blog.csdn.net/pengwill97/article/details/80879387 https://blog.csdn.net/chaiwenjun00 ...

  9. BZOJ3674 可持久化并査集

    @(BZOJ)[可持久化并査集] Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同 ...

  10. php 处理大文件方法 SplFileObject

    $csv_file = 'tmp.csv'; $start = isset($_GET['start']) ?intval($_GET['start']) : 1; // 从第几行开始读取 $num ...