CH 5102 Mobile Service



$ solution: $

这道题很容易想到DP,因为题目里已经说了要按顺序完成这些请求。所以我们可以线性DP,但是这一题的状态不是很好设,因为数据范围有点大,而且我们需要记录三个人的位置信息。但是我们可以发现完成一个请求时三个人中必然有一人在这个请求的位置,所以我们可以根据请求来判断其中一人的位置,这样我们就只需要记录其他两个人了。而复杂度似乎刚好够用。

设 $ F[i][j][k] $ 表示已经处理完第 $ i $ 个请求,且另外两个人分别在 $ j $ 和 $ k $ 的的最小花费,然后我们可以用这个状态向后转移:

if(j!=a[i+1]&&k!=a[i+1])f[i+1][j][k]=min(f[i+1][j][k],f[i][j][k]+d[a[i]][a[i+1]]);
if(a[i]!=a[i+1]&&k!=a[i+1])f[i+1][a[i]][k]=min(f[i+1][a[i]][k],f[i][j][k]+d[j][a[i+1]]);
if(a[i]!=a[i+1]&&j!=a[i+1])f[i+1][a[i]][j]=min(f[i+1][a[i]][j],f[i][j][k]+d[k][a[i+1]]);

需要注意题目说了不能有两个人在同一个位置!



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int m,n,ans;
int a[1005];
int d[205][205];
int f[1003][203][203]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
m=qr(); n=qr(); a[0]=1;
for(rg i=1;i<=m;++i)
for(rg j=1;j<=m;++j)
d[i][j]=qr();
for(rg i=1;i<=n;++i) a[i]=qr();
for(rg i=0;i<=n;++i)
for(rg j=1;j<=m;++j)
for(rg k=1;k<=m;++k)
f[i][j][k]=1e7;
f[0][2][3]=0;
for(rg i=0;i<n;++i){
for(rg j=1;j<=m;++j){
for(rg k=1;k<=m;++k){
if(f[i][j][k]<1e7){
if(j!=a[i+1]&&k!=a[i+1])f[i+1][j][k]=min(f[i+1][j][k],f[i][j][k]+d[a[i]][a[i+1]]);
if(a[i]!=a[i+1]&&k!=a[i+1])f[i+1][a[i]][k]=min(f[i+1][a[i]][k],f[i][j][k]+d[j][a[i+1]]);
if(a[i]!=a[i+1]&&j!=a[i+1])f[i+1][a[i]][j]=min(f[i+1][a[i]][j],f[i][j][k]+d[k][a[i+1]]);
}
}
}
} ans=1e7;
for(rg i=1;i<=m;++i)
for(rg j=1;j<=m;++j)
ans=min(ans,f[n][i][j]);
printf("%d\n",ans);
return 0;
}

CH 5102 Mobile Service(线性DP)的更多相关文章

  1. [tyvj 1061] Mobile Service (线性dp 滚动数组)

    3月15日第一题! 题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须 ...

  2. CH5102 Mobile Service【线性dp】

    5102 Mobile Service 0x50「动态规划」例题 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个 ...

  3. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  4. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

  5. cf909C 线性dp+滚动数组好题!

    一开始一直以为是区间dp.. /* f下面必须有一个s 其余的s可以和任意f进行匹配 所以用线性dp来做 先预处理一下: fffssfsfs==>3 0 1 1 dp[i][j] 表示第i行缩进 ...

  6. 2018.09.21 codeforces1051D. Bicolorings(线性dp)

    传送门 sb线性DP. f[i][j][0/1/2/3]f[i][j][0/1/2/3]f[i][j][0/1/2/3]表示前i列j个连通块且第i列状态为00/01/10/11时的方案总数. 这个显然 ...

  7. CH5102 Mobile Service

    CH5102 Mobile Service 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去.某一时刻只有一 ...

  8. CH 5302 金字塔(区间DP)

    CH 5302 金字塔 \(solution:\) 很神奇的一道题目,当时看到还以为是一道字符串求回文子串的题目.但是数据范围很小,而且只知道回文串也不好做.但是我们观察可得,如果是深度搜索便利,那么 ...

  9. CH 5105 Cookies(贪心+DP)

    \(CH 5105 Cookies\) \(solution:\) 真是好题一道!这道题我想了很久很久,就得这一题可以直接完全贪心,可惜最后还是失败了,但是对贪心的深入思考也换来了一个最优解方案.然后 ...

随机推荐

  1. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  2. 【Luogu】P1972HH的项链(链表+树状数组)

    题目链接 难题,所以会讲得细一些. 首先我们想如何统计区间[l,r]内不同贝壳的个数. 第一个思路就是线段树/树状数组,query(1,r)-query(1,l-1)对不对? 然而这样是不对的. 然后 ...

  3. idea打包SpringBoot项目打包成jar包和war

    - 打包成jar包 1. <groupId>com.squpt.springboot</groupId> <artifactId>springbootdemo< ...

  4. K-th Number(poj 2104)

    题意:静态第K大 #include<cstdio> #include<iostream> #include<cstring> #define N 200010 #d ...

  5. 洛谷 [P2216] 理想的正方形

    二维单调队列 先横向跑一边单调队列,记录下每一行长度为n的区间的最值 在纵向跑一边单调队列,得出结果 注意,mi要初始化为一个足够大的数 #include <iostream> #incl ...

  6. virtualbox中centos虚拟机网络配置

    本文讲述的是如何在Oracle VM VirtualBox安装的CentOS虚拟机中进行网络配置,使得虚拟机可以访问宿主主机,也能访问外网,宿主主机可以访问虚拟机,虚拟机之间也可以相互访问. 在Vir ...

  7. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations

    得到k二进制后,对每一位可取得的方法进行相乘即可,k的二进制形式每一位又分为2种0,1,0时,a数组必定要为一长为n的01串,且串中不出现连续的11,1时与前述情况是相反的. 且0时其方法总数为f(n ...

  8. Unity3D 异步加载 在 场景加载 中的使用

    异步加载 我们想一想玩过的一些游戏,基本都会有加载界面——因为游戏场景数据较大,所以需要加载一小段时间.那为什么一些2D游戏也会有加载界面呢?按理说2D游戏场景会很小,这样做是为了让游戏跑在低端设备上 ...

  9. luogu P1342 请柬

    题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计划.许多学生被雇来分发这些请 ...

  10. Hive 外部表 分区表

      之前主要研究oracle与mysql,认为hive事实上就是一种数据仓库的框架,也没有太多另类,所以主要精力都在研究hadoop.hbase,sqoop,mahout,近期略微用心看了下hive. ...