Description


有一个m*n格的迷宫(表示有m行、n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。

优先顺序:左上右下

Input


第一行是两个数m,n(1 < m,n < 15),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。

Output


所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“一>”表示方向。

如果没有一条可行的路则输出-1。

Sample Input


5 6

1 0 0 1 0 1

1 1 1 1 1 1

0 0 1 1 1 0

1 1 1 1 1 0

1 1 1 0 1 1

1 1

5 6

Sample Output


(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)

(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

题解


按题意暴搜即可。

第一次忘了给(1,1)打经历过的tag,卡掉了一次

#include<cstdio>
#include<iostream>
using namespace std;
bool sf[17][17];
int sx,sy,tx,ty;
int m,n;
int mx[5]={0,0,-1,0,1};
int my[5]={0,-1,0,1,0};
int stack[307][2];
int tos=0;
bool ss[17][17];
int flag=0;
void print()
{
flag++;
printf("(%d,%d)",sx,sy);
for(int i=1;i<=tos;++i)
printf("->(%d,%d)",stack[i][0],stack[i][1]);
cout<<endl;
return;
}
void search(int x,int y)
{
for(int c=1;c<=4;++c)
{
x+=mx[c],y+=my[c];
if(sf[x][y]&&!ss[x][y])
{
//cout<<x<<" "<<y<<endl;
stack[++tos][0]=x;stack[tos][1]=y;
if(x==tx&&y==ty){print();}
else {ss[x][y]=1;search(x,y);ss[x][y]=0;}
tos--;
}
x-=mx[c],y-=my[c];
}
return;
}
int main()
{
cin>>m>>n;
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
cin>>sf[i][j];cin>>sx>>sy>>tx>>ty;
ss[sx][sy]=1;
search(sx,sy);
if(!flag)cout<<-1;
return 0;
}

「LuoguP1238」 走迷宫的更多相关文章

  1. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  2. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  3. 「Luogu4321」随机游走

    「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期 ...

  4. 「HNOI2013」游走

    「HNOI2013」游走 题目描述 一个无向连通图,顶点从 \(1\) 编号到 \(N\) ,边从 \(1\) 编号到 \(M\) .小 \(Z\) 在该图上进行随机游走,初始时小 \(Z\) 在 \ ...

  5. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  6. 做高逼格程序员之说走就走的「Windows」

    简介:随着移动固态硬盘越来越便宜,网上逐渐出来一个黑科技.Windows To GO见名知意.简单来说就是在U盘或者是移动固态硬盘上安装Windows系统.达到即插即用. WTG 简介 Windows ...

  7. 用Q-learning算法实现自动走迷宫机器人

    项目描述: 在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人. 如上图所示,智能机器人显示在右上角.在我们的迷宫中,有陷阱(红色炸弹)及终点(蓝色的目标点)两种情景.机器人要尽量避开陷阱.尽 ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. 「NOI2013」小 Q 的修炼 解题报告

    「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...

随机推荐

  1. Highcharts 动态制作3D柱状图

    学习参考菜鸟网站:http://www.runoob.com/highcharts/highcharts-tutorial.html 我是通过后端返回设备数据,进行前端出图,效果如下: 代码如下: d ...

  2. Nginx+Uwsgi+Django以及解决的一些问题

    1.pip3 install uwsgi,项目目录路径:/data/my_env1/monitor1/,项目名:monitor1,app名:show 测试启动: ln -s /data/linkdoo ...

  3. Linux使用screen实现关闭ssh连接的情况下,让程序继续在后台运行

    Ubuntu默认没有安装screen,需要手动安装. 安装命令: sudo apt-get install screen 简单的操作方法: 直接输入命令 screen 进入screen子界面,此时pu ...

  4. 关于button中设置文字不显示的问题

    这个因为使用的image加载方式是setimage而不是setbackgroundimage导致文字始终出不来.

  5. Intel Edision —— 上电、基本设置与系统初探

    前言 原创文章,转载引用务必注明链接.如有疏漏,欢迎斧正. Intel的文档其实挺清楚了,坛子上很多人把文档又详细复述一边,私以为一篇就够了其他的跟着文档走一遍也挺好的...俗一把使用过程顺手记录下来 ...

  6. Java安全之数字证书

    在前面说到.消息摘要用于验证数据完整性,对称与非对称加密用于保证数据保密性,数据签名用于数据的抗否认性,于是集这些安全手段于一身的终极武器--数字证书出现了.数字证书具备了加密/解密的必要信息.包括签 ...

  7. C++对象模型——Default Constructor的建构操作(第二章)

    第2章    构造函数语意学 (The Semantics of Constructor) 关于C++,最常听到的一个抱怨就是,编译器背着程序猿做了太多事情.Conversion运算符就是最常被引用的 ...

  8. windows核心编程之进程间共享数据

    有时候我们会遇到window进程间共享数据的需求,例如说我想知道系统当前有多少某个进程的实例. 我们能够在程序中定义一个全局变量.初始化为0.每当程序启动后就加1.当然我们我们能够借助第三方介质来储存 ...

  9. Tomcat 80端口 配置及域名访问步骤

    一.修改端口tomcat默认监听端口是8080,我们如果想不带端口的直接访问项目,就必须监听80 端口: service.xml 以下代码段 <Connector port="8080 ...

  10. 服务器返回JSON,IE出现下载问题

    我向来的观点,IE就是个奇葩. 服务器返回json,chrome处理得好地地,但IE却奇葩地向你请求是否要保存这个JSON文件? 之所以出现这种弱智现象,是因为IE无法识别一个所谓的响应头部:appl ...