转载自https://blog.csdn.net/weixin_37517391/article/details/83821752

题解

其实这题不难,只要想到了前缀和差分就基本OK了.
我们要求的是第$i$项的式子:
$F(i)=(a_1+a_2+...+a_i)^k+(a_2+...+a_i)^k+...+a_i^k$
记$S_i = a_1 + a_2 +...+a_i,S_0=0$
$F(i) = (S_i-S_0)^k+(S_i-S_1)^k+...+(S_i-S_{i-1})^k$
二项式定理展开:
$F(i) = \sum_{t=0}^kC_k^tS_i^t(-S_0)^{k-t} +  \sum_{t=0}^kC_k^tS_i^t(-S_1)^{k-t} +...+ \sum_{t=0}^kC_k^tS_i^t(-S_{i-1})^{k-t}$
整理得:
$F(i) = \sum_{t=0}^k C_k^t S_i^t(-1)^{k-t} (S_0^{k-t}+S_1^{k-t}+...+S_{i-1}^{k-t})$
再记:
$SS[i][j] = S_0^i + S_1^i + ... + S_j^i$
那么
$F(i) = \sum_{t=0}^k C_k^t S_i^t(-1)^{k-t} (SS[k-t][i-1])$
注意到$SS$可以$O(nk)$预处理出来,$S$也可以$O(nk)$预处理出来,而$F(i)$就可以$O(k)$出来。

代码

 #include <iostream>
#include <algorithm>
#include <cstring>
#define pr(x) std::cout << #x << ':' << x << std::endl
#define rep(i,a,b) for(int i = a;i <= b;++i) typedef long long LL;
const int N = ;
const LL P = 1e9+;
int T,n,k;
char s[N];
long long S[][N],SS[][N];
long long C[][];
void init() {
C[][] = ;
for(int i = ;i <= ;++i) {
C[i][] = ;
for(int j = ;j <= i;++j) {
C[i][j] = (C[i-][j-] + C[i-][j]) % P;
}
}
}
int main() {
std::ios::sync_with_stdio(false);
init();
std::cin >> T;
while(T--) {
std::cin >> n >> k;
std::cin >> s;
for(int i = ;i <= n;++i) S[][i] = ;
for(int i = ;i <= n;++i) S[][i] = (s[i-]-'') + S[][i-] ;
for(int i = ;i <= k;++i)
for(int j = ;j <= n;++j)
S[i][j] = S[][j] * S[i-][j] % P; SS[][] = ; //特殊化处理,0^0=1 for(int i = ;i <= k;++i) {
for(int j = ;j <= n;++j)
SS[i][j] = (SS[i][j-] + S[i][j])% P;
} for(int i = ;i <= n;++i) {
long long ans = ;
for(int j = ;j <= k;++j) {
long long res = C[k][j]*S[j][i]%P*SS[k-j][i-]%P;
if((k-j)%==) ans = (ans + res) % P;
else ans = (ans - res + P) % P;
}
if(i != ) std::cout << " ";
std::cout << ans;
}
std::cout << std::endl;
}
return ;
}

北京区域赛I题,Uva7676,A Boring Problem,前缀和差分的更多相关文章

  1. Hihocoder 1634 Puzzle Game(2017 ACM-ICPC 北京区域赛 H题,枚举 + 最大子矩阵变形)

    题目链接  2017 Beijing Problem H 题意  给定一个$n * m$的矩阵,现在可以把矩阵中的任意一个数换成$p$,求替换之后最大子矩阵的最小值. 首先想一想暴力的方法,枚举矩阵中 ...

  2. HihoCoder 1629 Graph (2017 ACM-ICPC 北京区域赛 C题,回滚莫队 + 启发式合并 + 可撤销并查集)

    题目链接  2017 ACM-ICPC Beijing Regional Contest Problem C 题意  给定一个$n$个点$m$条边的无向图.现在有$q$个询问,每次询问格式为$[l, ...

  3. Heshen's Account Book HihoCoder - 1871 2018北京区域赛B题(字符串处理)

    Heshen was an official of the Qing dynasty. He made a fortune which could be comparable to a whole c ...

  4. HDU-5532//2015ACM/ICPC亚洲区长春站-重现赛-F - Almost Sorted Array/,哈哈,水一把区域赛的题~~

    F - Almost Sorted Array Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  5. hdu5080:几何+polya计数(鞍山区域赛K题)

    /* 鞍山区域赛的K题..当时比赛都没来得及看(反正看了也不会) 学了polya定理之后就赶紧跑来补这个题.. 由于几何比较烂写了又丑又长的代码,还debug了很久.. 比较感动的是竟然1Y了.. * ...

  6. HDU 4438 Hunters 区域赛水题

    本文转载于 http://blog.csdn.net/major_zhang/article/details/52197538 2012天津区域赛最水之题: 题意容易读懂,然后就是分情况求出A得分的数 ...

  7. 2018 ACM-ICPC 亚洲区域赛北京现场赛 I题 Palindromes

    做法:打表找规律 大数是过不了这个题的(但可以用来打表) 先找k的前缀,前缀对应边缘数字是哪个 如果第0位是2-9 对应奇数长度的1-8 第0位为1时,第1位为0时对应奇数长度的9,为1-9时对应偶数 ...

  8. HDU 5122 K.Bro Sorting(2014北京区域赛现场赛K题 模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5122 解题报告:定义一种排序算法,每一轮可以随机找一个数,把这个数与后面的比这个数小的交换,一直往后判 ...

  9. HDU 5119 Happy Matt Friends(2014北京区域赛现场赛H题 裸背包DP)

    虽然是一道还是算简单的DP,甚至不用滚动数组也能AC,数据量不算很大. 对于N个数,每个数只存在两个状态,取 和 不取. 容易得出状态转移方程: dp[i][j] = dp[i - 1][j ^ a[ ...

随机推荐

  1. asp.net实现服务器文件下载到本地

    1.说明 通过文件下载框实现将服务器上的文件下载到本地指定位置.这里需要指定服务器文件路径 try { string strFilePath = Server.MapPath("~" ...

  2. 修改 jq weui cityPicker.js原来的值

    1.对接后台接口,拿到返回来的值,注意数据格式要一样 var raw; $.ajax({ type: "GET", url: "/web/region/list.json ...

  3. 笔记:JavaScript闭包

    闭包 闭包是一种保护私有变量的机制,在函数执行时形成私有的作用域,保护里面的私有变量不受外界干扰.直观的说就是形成一个不销毁的栈环境. 对于闭包,当外部函数返回之后,内部函数依然可以访问外部函数的变量 ...

  4. Tensorflow多线程输入数据处理框架(一)——队列与多线程

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 对于队列,修改队列状态的操作主要有Enqueue.EnqueueMany和Dequeue.以下程序展示了如何使用这 ...

  5. java中stringBuilder的用法

    java中stringBuilder的用法 String对象是不可改变的.每次使用 System.String类中的方法之一时,都要在内存中创建一个新的字符串对象,这就需要为该新对象分配新的空间.在需 ...

  6. 动手实现 Redux(五):不要问为什么的 reducer

    经过了这么多节的优化,我们有了一个很通用的 createStore: function createStore (state, stateChanger) { const listeners = [] ...

  7. vue在使用ajax获取数据时,两种方法(jquery和vue_resource)

    @{    Layout = null;} <!DOCTYPE html> <html><head>    <meta name="viewport ...

  8. Windows API函数大全二

    4. API之打印函数 AbortDoc 取消一份文档的打印 AbortPrinter 删除与一台打印机关联在一起的缓冲文件 AddForm 为打印机的表单列表添加一个新表单 AddJob 用于获取一 ...

  9. oracle 权限、规则

    Oracle中关于权限与规则简单总结: --1,管理员登录 conn sys/orcl@orcl as sysdba; --2,创建用户方案---必须管理员身份才能操作 create user use ...

  10. AJPFX关于读取properties 配置文件 返回属性值

    :Properties的概述        * Properties 类表示了一个持久的属性集.        * Properties 可保存在流中或从流中加载.        * 属性列表中每个键 ...