有向图tarjan算法求连通分量的粗浅讲解、证明, // hdu1269
打算开始重新复习一遍相关算法。对于有向图tarjan算法,通过学习过很多说法,结合自己的理解,下面给出算法自己的观点。
算法总模型是一个dfs,结合一个stack(存放当前尚未形成SCC的点集合),记录下俩个数组:
dfn【i】:结点i的访问时间戳。 low[i]:i结点所能到达的祖先。
主要是俩次对low【u】的更新,一次:回溯的时候,u的孩子结点(vv)对u的更新,
if(low[vv]<low[u])low[u]=low[vv]; //孩子可以到达,我必然也可以到达。
二次:
if(dfn[vv]<low[u])low[u]=dfn[vv]; //能到达的祖先,所以更新。
这里“祖先”,表面上看是孩子,其实是某个祖先结点。
若每次访问对u的孩字访问结束:若u满足
if(dfn[u]==low[u])
则 以u为根,stack中u以及u上的点必然形成以个SCC。
个人证明如下:
1.u必然可以到达u的所有孩子,此时就是栈中u之上的点。这个毋庸置疑。
2.下面只需证明所有孩子都可以到达u:
对任意点(stack中在u之上的) i,必有dfn[i]>low[i],(若相等必然已经弹栈),i到达low[i]=dfn[j]<low[j]=dfn[k]<low[p].......,一直递减,其中i,j,k,p...代表不断找可达的祖先,
知道到u为止(递减有下界),所以任意结点都可以到u。
即证明了是u以上已经u是一个SCC。
额外说明几点(易误点):
1,:low值相同的点一定在同一个scc中,毋庸置疑的这个。
2:同一个SCC中的点的LOW值未必都相同,是因为更新有先后的问题(可以举例)。但是除根外,其他点dfn>low,这个显然。
对于无向图,只需要把边改为双向边即可,这时候,(无向图详细待更新)。
hdu1269题意:判断有向图是否是强连通。直接用tarjan算法即可,只有一个SCC(强连通分量)。
给出核心代码已经详见:(有向图涉及强连通的,要用栈)
void tarjan(int u)
{
dfn[u]=low[u]=++times; //时间戳的标记
instack[u]=1;
s.push(u);
for(int i=0;i<v[u].size();i++)
{
int vv=v[u][i];
if(!vis[vv])
{
vis[vv]=1;
tarjan(vv);
if(low[vv]<low[u])low[u]=low[vv]; //孩子可以到达,我必然也可以到达。
}
else if(instack[vv]) //注意,更新时要有在栈中条件,代表该孩子(其实是祖先)我能到达,而且是属于当前SCC。
{
if(dfn[vv]<low[u])low[u]=dfn[vv]; //能到达的祖先,所以更新。
}
}
if(dfn[u]==low[u]) //是一个scc的根节点,出栈,一发现就出栈。
{ int cur;
num++
do
{
cur=s.top();
s.pop();
instack[cur]=0;
SCC[cur]=num; //这里可以完成缩点工作。
}while(cur!=u);
}
}
有向图tarjan算法求连通分量的粗浅讲解、证明, // hdu1269的更多相关文章
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- Tarjan算法求有向图强连通分量并缩点
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- 浅谈 Tarjan 算法之强连通分量(危
引子 果然老师们都只看标签拉题... 2020.8.19新初二的题集中出现了一道题目(现已除名),叫做Running In The Sky. OJ上叫绮丽的天空 发现需要处理环,然后通过一些神奇的渠道 ...
- HDU 1269 迷宫城堡 tarjan算法求强连通分量
基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...
- [学习笔记] Tarjan算法求桥和割点
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...
- ZOJ Problem - 2588 Burning Bridges tarjan算法求割边
题意:求无向图的割边. 思路:tarjan算法求割边,访问到一个点,如果这个点的low值比它的dfn值大,它就是割边,直接ans++(之所以可以直接ans++,是因为他与割点不同,每条边只访问了一遍) ...
- POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)
题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...
随机推荐
- ArcGis server连接oracle
ArcGIG server连接Oracle 目录--gis服务器--添加arcgis server 下一步: 身份验证为在arcgis server manager 中的管理员登录密码和账户 对于服务 ...
- A. Pride (emmmm练习特判的好题)
题目连接 : http://codeforces.com/problemset/problem/891/A You have an array a with length n, you can per ...
- EF关于报错Self referencing loop detected with type的原因以及解决办法
1)具体报错 { "Message": "出现错误.", "ExceptionMessage": "“ObjectContent` ...
- iis隐藏index.php
1.先安装微软的URL Rewrite模块 网址是https://www.iis.net/downloads/microsoft/url-rewrite#additionalDownloads 安装完 ...
- VUE +element el-table运用sortable 拖拽table排序,实现行排序,列排序
Sortable.js是一款轻量级的拖放排序列表的js插件(虽然体积小,但是功能很强大) 项目需求是要求能对element中 的table进行拖拽行排序 这里用到了sorttable Sortable ...
- 【模板】任意模数NTT
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...
- PHP调用新浪API 生成短链接
我们经常收到类似于这样的短信(如下图),发现其中的链接并不是常规的网址链接,而是个短小精悍的短链接,产品中经常需要这样的需求,如果在给用户下发的短信中是一个很长的连接,用户体验肯定很差,因此我们需要实 ...
- MySQL开启日志跟踪
在开发过程中有时候会遇到sql相关的问题,但是有时候代码中不会直接看到真实的sql,想要看到mysql中实际执行的是什么sql,可以通过开启日志跟踪方式查看. 1 开启日志跟踪 SET GLOBAL ...
- perl学习二:简单变量
字符串变量:${}1.单引号:不进行变量替换,不进行转义,字符串可以跨行.2.双引号:变量替换(贪婪匹配原则).支持转义字符(转义字符可以另外看)3.反引号 字符串的特殊表示方法:qq(...) q( ...
- Python9-继承1-day24(大年初一)
#面向对象编程:'''思想:角色的抽象,创建类,创建角色,面对对象的关键字class 类名: 静态属性 = ‘aaa' def __init__(self):pass 类名.静态属性 ———存储在类的 ...