打算开始重新复习一遍相关算法。对于有向图tarjan算法,通过学习过很多说法,结合自己的理解,下面给出算法自己的观点。

算法总模型是一个dfs,结合一个stack(存放当前尚未形成SCC的点集合),记录下俩个数组:

dfn【i】:结点i的访问时间戳。 low[i]:i结点所能到达的祖先。

主要是俩次对low【u】的更新,一次:回溯的时候,u的孩子结点(vv)对u的更新,

  if(low[vv]<low[u])low[u]=low[vv];  //孩子可以到达,我必然也可以到达。

二次:

  if(dfn[vv]<low[u])low[u]=dfn[vv]; //能到达的祖先,所以更新。

这里“祖先”,表面上看是孩子,其实是某个祖先结点。

若每次访问对u的孩字访问结束:若u满足

if(dfn[u]==low[u])    

则 以u为根,stack中u以及u上的点必然形成以个SCC。

个人证明如下:

1.u必然可以到达u的所有孩子,此时就是栈中u之上的点。这个毋庸置疑。

2.下面只需证明所有孩子都可以到达u:

对任意点(stack中在u之上的) i,必有dfn[i]>low[i],(若相等必然已经弹栈),i到达low[i]=dfn[j]<low[j]=dfn[k]<low[p].......,一直递减,其中i,j,k,p...代表不断找可达的祖先,

知道到u为止(递减有下界),所以任意结点都可以到u。

即证明了是u以上已经u是一个SCC。

额外说明几点(易误点):

1,:low值相同的点一定在同一个scc中,毋庸置疑的这个。

2:同一个SCC中的点的LOW值未必都相同,是因为更新有先后的问题(可以举例)。但是除根外,其他点dfn>low,这个显然。

对于无向图,只需要把边改为双向边即可,这时候,(无向图详细待更新)。

hdu1269题意:判断有向图是否是强连通。直接用tarjan算法即可,只有一个SCC(强连通分量)。

给出核心代码已经详见:(有向图涉及强连通的,要用栈)

void tarjan(int u)
{
dfn[u]=low[u]=++times; //时间戳的标记
instack[u]=1;
s.push(u);
for(int i=0;i<v[u].size();i++)
{
int vv=v[u][i];
if(!vis[vv])
{
vis[vv]=1;
tarjan(vv);
if(low[vv]<low[u])low[u]=low[vv]; //孩子可以到达,我必然也可以到达。
}
else if(instack[vv]) //注意,更新时要有在栈中条件,代表该孩子(其实是祖先)我能到达,而且是属于当前SCC。
{
if(dfn[vv]<low[u])low[u]=dfn[vv]; //能到达的祖先,所以更新。
}
}
if(dfn[u]==low[u]) //是一个scc的根节点,出栈,一发现就出栈。
{ int cur;
          num++
       do
{
cur=s.top();
s.pop();
instack[cur]=0;
          SCC[cur]=num;                         //这里可以完成缩点工作。
}while(cur!=u);
}
}

有向图tarjan算法求连通分量的粗浅讲解、证明, // hdu1269的更多相关文章

  1. [Tarjan系列] Tarjan算法求无向图的双连通分量

    这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...

  2. Tarjan算法求有向图强连通分量并缩点

    // Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...

  3. tarjan算法求无向图的桥、边双连通分量并缩点

    // tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...

  4. Tarjan算法求割点

    (声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...

  5. 浅谈 Tarjan 算法之强连通分量(危

    引子 果然老师们都只看标签拉题... 2020.8.19新初二的题集中出现了一道题目(现已除名),叫做Running In The Sky. OJ上叫绮丽的天空 发现需要处理环,然后通过一些神奇的渠道 ...

  6. HDU 1269 迷宫城堡 tarjan算法求强连通分量

    基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...

  7. [学习笔记] Tarjan算法求桥和割点

    在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...

  8. ZOJ Problem - 2588 Burning Bridges tarjan算法求割边

    题意:求无向图的割边. 思路:tarjan算法求割边,访问到一个点,如果这个点的low值比它的dfn值大,它就是割边,直接ans++(之所以可以直接ans++,是因为他与割点不同,每条边只访问了一遍) ...

  9. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

随机推荐

  1. python_110_反射

    class Dog(object): def __init__(self,name): self.name=name def eat(self): print('%s is eating '%self ...

  2. CPP-STL:STL备忘

    STL备忘(转) 1. string.empty() 不是用来清空字符串,而是判断string是否为空,清空使用string.clear(); 2. string.find等查找的结果要和string ...

  3. Linux文件的IO操作 一

    系统调用 系统调用: 操作系统提供给用户程序调用的一组“特殊”接口,用户程序可以通过这组“特殊”接口来获得操作系统内核提供的服务 为什么用户程序不能直接访问系统内核提供的服务 为了更好地保护内核空间, ...

  4. 正则表达式匹配:根据key获取value

    需求 url请求html字符串,dytk值写在js里,可以看成是key-value的格式,需要提取dytk值. 解决方法 正则匹配 private string get_dytk(string htm ...

  5. javascript设计模式(张容铭)学习笔记 - 照猫画虎-模板方法模式

    模板方法模式(Template Method):父类中定义一组操作算法骨架,而降一些实现步骤延迟到子类中,使得子类可以不改变父类的算法结构的同时可重新定义算法中某些实现步骤. 项目经理体验了各个页面的 ...

  6. JavaScript调试技巧之console.log()详解--2015-08-07

    对于JavaScript程序的调试,相比于alert(),使用console.log()是一种更好的方式,原因在于:alert()函数会阻断 JavaScript程序的执行,从而造成副作用:而cons ...

  7. CentOS7写汇编并编译运行汇编代码

    1.下载nasm编译器 下载地址是https://www.nasm.us/pub/nasm/releasebuilds/ wget https://www.nasm.us/pub/nasm/relea ...

  8. The twelve Day-前端之html

    前端知识之html内容 HTML介绍 1.web服务本质 import socket sk = socket.socket() sk.bind(()) sk.listen() while True: ...

  9. 看外设(uart/spis/i2c/i2s)模块设计

    1.先看外设接口协议. 2.看具体设计文档. 3.仿真case.

  10. Linux文件权限与文件夹权限实践

    文件权限在基础中有介绍,不在重复 一.文件夹权限: 示例: 解释说明: r --read 既ls w --write     既创建新的目录或者文件 x --execute 既cd 现在有4个用户分属 ...