设f[s][i]为已经买了集合s,当前在商店i,转移的话就是枚举新买的物品,两种情况,一种是在原商店买,不用付路费,另一种是从其他商店过来,这种再枚举从那个商店过来是不行的,记一个mn[s]为已经买了集合s的最小代价,直接用这个转移第二种情况即可

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=105;
int n,m,b[N],d[N],a[N][N],f[(1<<16)+5][N],mn[(1<<16)+5],ans=1e9;
int main()
{
scanf("%d%d",&n,&m);
b[0]=1;
for(int i=1;i<=m;i++)
b[i]=b[i-1]<<1;
for(int i=1;i<=n;i++)
{
scanf("%d",&d[i]);
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
}
memset(f,0x3f,sizeof(f));
memset(mn,0x3f,sizeof(mn));
for(int i=1;i<=n;i++)
f[0][i]=d[i],mn[0]=min(mn[0],d[i]);
for(int s=1;s<b[m];s++)
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
if(s&b[j-1])
f[s][i]=min(f[s][i],min(f[s^b[j-1]][i]+a[i][j],mn[s^b[j-1]]+d[i]+a[i][j]));
mn[s]=min(mn[s],f[s][i]);
}
for(int i=1;i<=n;i++)
ans=min(ans,f[(1<<m)-1][i]);
printf("%d\n",ans);
return 0;
}

bzoj 4145: [AMPPZ2014]The Prices【状压dp】的更多相关文章

  1. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  2. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

  3. 【BZOJ4145】[AMPPZ2014]The Prices 状压DP

    [BZOJ4145][AMPPZ2014]The Prices Description 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i ...

  4. bzoj4145 AMPPZ2014 The Prices 状压dp

    这个题.......很可以,很小清晰......反正正经的东西我都没想到:重点在于——————我不会处理那个多出来的路费所以当时我就骚骚的弄了一颗树包状压其实这是一个类01背包的状压在每个状态用01背 ...

  5. bzoj4145 [AMPPZ2014]The Prices 状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4145 题解 好像这道题有不少方法呢. ...谁叫这道题有点简单,所以方法多呗. 我的方法: 求 ...

  6. BZOJ.3058.四叶草魔杖(Kruskal 状压DP)

    题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的, ...

  7. bzoj 5299: [Cqoi2018]解锁屏幕 状压dp+二进制

    比较简单的状压 dp,令 $f[S][i]$ 表示已经经过的点集为 $S$,且最后一个访问的位置为 $i$ 的方案数. 然后随便转移一下就可以了,可以用 $lowbit$ 来优化一下枚举. code: ...

  8. [BZOJ] 4145: [AMPPZ2014]The Prices

    设\(f[S][i]\)表示考虑到第\(i\)家店,已经买了集合\(S\)内的物品 一个朴素的想法是枚举子集转移 \[ f[S][i]=\min\{f[T][i-1]+cost[S\oplus T][ ...

  9. BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解

    挺神的一道题 ~ 由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数. 然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 ...

  10. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

随机推荐

  1. 【Jqurey EasyUI+Asp.net】----DataGrid数据绑定,以及增、删、改(SQL)

    也懒得打其他字了,直接进入主题吧 1.首先,数据表Rex_Test ID int 自增 tName varchar(10) 姓名 tEmail varchar(80) 邮箱 2.至于代码里的Jqure ...

  2. 从实例看hibernate的主键生成策略

    学习了hibernate会发现.hibernate中有实体类.实体类的映射文件.可是我们怎么样才干知道实体类的主键是如何的生成方式呢?hibernate提供的主键生成策略帮我们完美地解答了这个疑问.以 ...

  3. 组件接口(API)设计指南[2]-类接口(class interface)

    *返回文件夹阅读其它章节: http://blog.csdn.net/cuibo1123/article/details/39894477 类接口(class interface) 你能够參考MGTi ...

  4. Using Virtual Serial Ports on Linux (Ubuntu)

    http://www.xappsoftware.com/wordpress/2013/10/07/using-virtual-serial-ports-on-linux-ubuntu/?goback= ...

  5. 读写锁(pthread)

    读写锁: 用于对于某个给定资源的共享访问,而不是像互斥锁那样,将所有试图进入临界区的线程都阻塞住 相关内容: 线程互斥锁 分配规则:(写独占,读共享) 1.只要没有线程持有某个给定的读写锁用于写,那么 ...

  6. 01背包+卡精度 Hdu 2955

    <span style="color:#3333ff;">/* ---------------------------------------------------- ...

  7. Mac版idea使用总结

    1.设置文档注释快捷键:快捷键设置里搜索 Fix doc comment 2.IDEA不显示项目project视图(转载于 https://blog.csdn.net/oyimiyangguang12 ...

  8. Android开发环境搭建时遇到问题的解决方法

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/linux_loajie/article/details/33823637 Android开发环境搭建 ...

  9. 深度学习入门-4.1 AND.py 源码分析

    源代码 ------------------------------------------------------------------------------------------------ ...

  10. 「翻译」Unity中的AssetBundle详解(一)

    AssetBundles AssetBundle是一个存档文件,其中包含平台在运行时加载的特定资产(模型,纹理,预制,音频剪辑,甚至整个场景).AssetBundles可以表示彼此之间的依赖关系;例如 ...