设f[s][i]为已经买了集合s,当前在商店i,转移的话就是枚举新买的物品,两种情况,一种是在原商店买,不用付路费,另一种是从其他商店过来,这种再枚举从那个商店过来是不行的,记一个mn[s]为已经买了集合s的最小代价,直接用这个转移第二种情况即可

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=105;
int n,m,b[N],d[N],a[N][N],f[(1<<16)+5][N],mn[(1<<16)+5],ans=1e9;
int main()
{
scanf("%d%d",&n,&m);
b[0]=1;
for(int i=1;i<=m;i++)
b[i]=b[i-1]<<1;
for(int i=1;i<=n;i++)
{
scanf("%d",&d[i]);
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
}
memset(f,0x3f,sizeof(f));
memset(mn,0x3f,sizeof(mn));
for(int i=1;i<=n;i++)
f[0][i]=d[i],mn[0]=min(mn[0],d[i]);
for(int s=1;s<b[m];s++)
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
if(s&b[j-1])
f[s][i]=min(f[s][i],min(f[s^b[j-1]][i]+a[i][j],mn[s^b[j-1]]+d[i]+a[i][j]));
mn[s]=min(mn[s],f[s][i]);
}
for(int i=1;i<=n;i++)
ans=min(ans,f[(1<<m)-1][i]);
printf("%d\n",ans);
return 0;
}

bzoj 4145: [AMPPZ2014]The Prices【状压dp】的更多相关文章

  1. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  2. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

  3. 【BZOJ4145】[AMPPZ2014]The Prices 状压DP

    [BZOJ4145][AMPPZ2014]The Prices Description 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i ...

  4. bzoj4145 AMPPZ2014 The Prices 状压dp

    这个题.......很可以,很小清晰......反正正经的东西我都没想到:重点在于——————我不会处理那个多出来的路费所以当时我就骚骚的弄了一颗树包状压其实这是一个类01背包的状压在每个状态用01背 ...

  5. bzoj4145 [AMPPZ2014]The Prices 状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4145 题解 好像这道题有不少方法呢. ...谁叫这道题有点简单,所以方法多呗. 我的方法: 求 ...

  6. BZOJ.3058.四叶草魔杖(Kruskal 状压DP)

    题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的, ...

  7. bzoj 5299: [Cqoi2018]解锁屏幕 状压dp+二进制

    比较简单的状压 dp,令 $f[S][i]$ 表示已经经过的点集为 $S$,且最后一个访问的位置为 $i$ 的方案数. 然后随便转移一下就可以了,可以用 $lowbit$ 来优化一下枚举. code: ...

  8. [BZOJ] 4145: [AMPPZ2014]The Prices

    设\(f[S][i]\)表示考虑到第\(i\)家店,已经买了集合\(S\)内的物品 一个朴素的想法是枚举子集转移 \[ f[S][i]=\min\{f[T][i-1]+cost[S\oplus T][ ...

  9. BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解

    挺神的一道题 ~ 由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数. 然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 ...

  10. BZOJ 3864 Hero meet devil (状压DP)

    最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...

随机推荐

  1. java utf8字符 导出csv 文件的乱码问题。

    在输出的格式为UTF-8的格式,但是打开CSV文件一直为乱码,后来参考了这里的代码,搞定了乱码问题,原文请参考:http://hbase.iteye.com/blog/1172200 private ...

  2. 全国省市区三级联动js

    function Dsy(){ this.Items = {}; } Dsy.prototype.add = function(id,iArray){ this.Items[id] = iArray; ...

  3. Linux 用户和文件权限管理

    Linux —— 用户权限管理 权限: 为什么需要权限管理?    1.计算机资源有限,我们需要合理的分配计算机资源.    2.Linux是一个多用户系统,对于每一个用户来说,个人隐私的保护是十分重 ...

  4. 如何动态地给vSphere虚拟机模板注入信息

    在做vSphere自动化安装过程中,遇到这样一个需求:将vCenter Server做成模板,在给用户自动化装好vSphere后, 下载vCenter Server模板并启动虚拟机,然后将vCente ...

  5. Java基础 面向对象的详解

    1.1 万物皆对象 我们是怎么认识世界的? 人类从小就不断的接触到各种各类存在世界上的各种生物,然后通过事物的公共特性,将它们归类,所以以后就不会出现见到猫叫老虎.那么我们在现实生活中,是通过具体的某 ...

  6. activity栈管理的3种方式

    一.背景 在android开发过程最经常使用的组件非activity莫属. 通过分析activity的各种跳转,执行同学能够分析用户的各种行为.更重要的一点是在做插件化的过程中,我们经常会对activ ...

  7. 利用BADI WORKORDER_INFOSYSTEM在COOIS中加入自己定义列办事处

    需求描写叙述:依据LC业务部门提出的需求.须要在COOIS中加入办事处一列. 1.在IOHEADER_TAB的CI_IOHEADER中加入字段办事处.如以下图所看到的:   watermark/2/t ...

  8. 2017ACM/ICPC广西邀请赛 K- Query on A Tree trie树合并

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  9. BZOJ 1567: [JSOI2008]Blue Mary的战役地图 矩阵二维hash

    1567: [JSOI2008]Blue Mary的战役地图 Description Blue Mary最近迷上了玩Starcraft(星际争霸) 的RPG游戏.她正在设法寻找更多的战役地图以进一步提 ...

  10. Serializable 序列化 The byte stream created is platform independent. So, the object serialized on one platform can be deserialized on a different platform.

    Java 序列化接口Serializable详解 - 火星猿类 - 博客园 http://www.cnblogs.com/tomtiantao/p/6866083.html 深入理解JAVA序列化 - ...