[bzoj1867][Noi1999][钉子和小球] (动态规划)
Description

Input
Output
Sample Input
Sample Output
Solution
设f[i][j]代表小球落到位置为(i,j)的概率,分数求解即可
#include <stdio.h>
#define L long long
#define RG register inline void Rin(RG int &x) {
x=;RG int c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
x*=f; } inline void ploy(RG bool &x) {
RG char c=getchar();
while(c!='*'&&c!='.')c=getchar();
x=c=='*'?true:false; } void Shiki(RG L x) {
if(!x)return;
Shiki(x/);
putchar(x%+); } L gcd(RG L a,RG L b) {
return b?gcd(b,a%b):a; } bool _map[][]; int n,m; struct fr{
L n,d; fr(RG L _=,RG L __=) : n(_),d(__) {} }f[][]; inline void rec(fr &_this) {
L t=gcd(_this.n,_this.d);
_this.n/=t;
_this.d/=t; } fr operator + (const fr &a,const fr &b) {
fr res;
L t=gcd(a.d,b.d);
res.n=b.d/t*a.n+a.d/t*b.n;
res.d=a.d/t*b.d;
return res; } fr operator * (const fr &a,const fr &b) {
fr res(a.n*b.n,a.d*b.d);
rec(res);
return res; } void operator += (fr &a,const fr &b) {
a=a+b; } int main() {
Rin(n),Rin(m);
for(RG int i=; i<=n; i++)
for(RG int j=; j<=i; j++)
ploy(_map[i][j]);
f[][]=fr(,);
for(RG int i=; i<=n; i++)
for(RG int j=; j<=i; j++)
rec(f[i][j]),
_map[i][j]?
f[i+][j]+=f[i][j]*fr(,),f[i+][j+]+=f[i][j]*fr(,):
f[i+][j+]+=f[i][j];
rec(f[n+][m+]);
Shiki(f[n+][m+].n); putchar('/'); Shiki(f[n+][m+].d);
return ;
}
[bzoj1867][Noi1999][钉子和小球] (动态规划)的更多相关文章
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- bzoj1867: [Noi1999]钉子和小球(DP)
一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...
- [POJ1189][BZOJ1867][CODEVS1709]钉子和小球
题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...
- BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...
- bzoj 1867: [Noi1999]钉子和小球【dp】
设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> usi ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- codevs 1709 钉子和小球
1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...
- bzoj1867钉子和小球
题目链接 简单$DP$ $$dp[1][1]=1(\text{显然})$$ $$map[i][j]=='*'?dp[i+1][j]+=dp[i][j]/2,dp[i+1][j+1]+=dp[i][j] ...
随机推荐
- E20170528-ts
partial adj. 部分的; 偏爱的; 偏袒的; 钟爱的; form n. 表格; 方式; 形状,形式; 外形 annotate vt. 注解,注释; n. 注释者; annotat ...
- 【Learning】多项式的一些东西
FFT 坑 NTT 将\(FFT\)中的单位复数根改成原根即可. 卡常版NTT模版 struct Mul { int Len; int wn[N], Lim; int rev[N]; inline v ...
- IDEA 激活方式
最新的IDEA激活方式 使用网上传统的那种输入网址的方式激活不了,使用http://idea.lanyus.com/这个网站提供的工具进行 1.进入hosts文件中:C:\Windows\System ...
- Codefoces 828C
C. String Reconstruction time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- sublime text 3 使用技巧
一.下载 官网下载合适的版本(http://www.sublimetext.com/3) 二.破解 执行 Help->Enter license 粘贴你的License代码 ----- BEGI ...
- Vue组件之间通信的三种方式
最近在看梁颠编著的<Vue.js实战>一书,感觉颇有收获,特此记录一些比价实用的技巧. 组件是MVVM框架的核心设计思想,将各功能点组件化更利于我们在项目中复用,这类似于我们服务端面向对象 ...
- SqlServer学习-常用的sql语句-持续更新中
1.获取数据库下的所有表名 select TABLE_NAME from information_schema.tables where TABLE_TYPE='Base TABLE' 2.随机取出1 ...
- JS简单路由实现
说一下前端路由实现的简要原理,以 hash 形式(也可以使用 History API 来处理)为例, 当 url 的 hash 发生变化时,触发 hashchange 注册的回调,回调中去进行不同的操 ...
- 远程图形界面:VncServer与KDE桌面远程连接
强烈不建议putty+xming的工作方式,太慢了,且界面也不是特别友好. 原文:vncserver与KDE远程连接 建议:不过还是建议使用Xshell,使用 ...
- daxcie
Database->Edit Current DBMS菜单 修改如下:选中General选项卡,依次打开Script->Sql->Fomat->CaseSensitivityU ...