题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297

一看感觉是矩阵快速幂之类的,但边权不好处理啊;

普通的矩阵快速幂只能处理边权为1的,所以想办法把边权处理成1;

仔细一看还有一个条件是边权小于10;

所以拆点!把一个点拆成10个点表示到它不同的距离,那么和它相连的那些点就可以跟某个距离的点连边权为1的边;

虽然没有自己想出来,不过1A还是极好的!(因为太简单了)

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,T,w[][],tot,id[][],mod=;
struct Matrix{
int a[][];
Matrix(){memset(a,,sizeof a);}
Matrix operator * (const Matrix &y) const
{
Matrix x;
for(int i=;i<=tot;i++)
for(int k=;k<=tot;k++)
for(int j=;j<=tot;j++)
(x.a[i][j]+=a[i][k]*y.a[k][j])%=mod;
return x;
}
void init(){for(int i=;i<=tot;i++)a[i][i]=;}
}f,ans;
Matrix pw(Matrix x,int k)
{
Matrix ret; ret.init();
for(;k;k>>=,x=x*x)
if(k&)ret=ret*x;
return ret;
}
int main()
{
scanf("%d%d",&n,&T);
char ch[];
for(int i=;i<n;i++)
{
scanf("%s",&ch);
for(int j=;j<n;j++)
w[i][j]=ch[j]-'';
}
for(int i=;i<n;i++)
for(int j=;j<=;j++)
{
id[i][j]=++tot;
if(j)f.a[tot-][tot]++;
}
for(int i=;i<n;i++)
for(int j=;j<n;j++)
if(w[i][j])f.a[id[i][w[i][j]-]][id[j][]]++;
ans.a[][id[][]]=;
Matrix fn=pw(f,T);
ans=ans*fn;
printf("%d",ans.a[][id[n-][]]);
return ;
}

bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂的更多相关文章

  1. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  2. 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

    [BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...

  3. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  4. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  5. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  6. Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化

    大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...

  7. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

  8. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

  9. 矩阵快速幂在ACM中的应用

    矩阵快速幂在ACM中的应用 16计算机2黄睿博 首发于个人博客http://www.cnblogs.com/BobHuang/ 作为一个acmer,矩阵在这个算法竞赛中还是蛮多的,一个优秀的算法可以影 ...

随机推荐

  1. 08Oracle Database 完整性约束

    Oracle Database 完整性约束 非空约束 创建表时 Create table table_name( Column_name datatype NOT NULL,… ); 修改表时 Alt ...

  2. mysql5.7报Access denied for xxx@localhost 的解决

    使用root用户登录mysql数据库若如下报错 ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using passwor ...

  3. UVA12118 Inspector's Dilemma(欧拉路径)

    题目: 某个国家有V(V≤1000)个城市,每两个城市之间都有一条双向道路直接相连,长度为T(每条边的长度都是T).你的任务是找一条最短的道路(起点和终点任意), 使得该道路经过E条指定的边.输出这条 ...

  4. 一篇入门Express

    目录 1.安装 2.Hello World 3.基础路由设置 4.高级路由设置 5.静态文件 6.中间件 7.生成器 1.安装 Express 是一个 基于 Node.js 的简洁灵活的 Web 应用 ...

  5. Laravel学习:请求到响应的生命周期

    Laravel请求到响应的整个执行过程,主要可以归纳为四个阶段,即程序启动准备阶段.请求实例化阶段.请求处理阶段.响应发送和程序终止阶段. 程序启动准备阶段 服务容器实例化 服务容器的实例化和基本注册 ...

  6. 零基础到架构师 不花钱学JavaEE(基础篇)- 概述

    Java简单来说是一门语言,Java能干什么? 网站:开发大,中,小型网站. 服务器端程序:企业级程序开发. APP:Android的APP基本使用Java开发. 云:Hadoop就是使用Java语言 ...

  7. [USACO1.2]挤牛奶Milking Cows

    题目描述 三个农民每天清晨5点起床,然后去牛棚给3头牛挤奶.第一个农民在300秒(从5点开始计时)给他的牛挤奶,一直到1000秒.第二个农民在700秒开始,在 1200秒结束.第三个农民在1500秒开 ...

  8. Eddy's mistakes

    Problem Description Eddy usually writes  articles ,but he likes mixing the English letter uses, for ...

  9. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

  10. 基本的数据类型分析----java.lang.Number类及其子类分析

    本文转自http://blog.csdn.net/springcsc1982/article/details/8788345 感谢作者 编写了一个测试程序,如下: int a = 1000, b= 1 ...