https://www.zybuluo.com/ysner/note/1245941

题面

给一个\(n\)点完全图,点权均小于\(2^m\)。定义边权等于两端点点权的与和(即\(a_i\&b_i\))。求最大生成树边权和。

  • \(10pts\ n\leq8000\)
  • \(15pts\ m=1\)
  • \(25pts\ m\leq12\)
  • \(55pts\ m\leq15\)
  • \(90pts\ n\leq10^5,m\leq18\)
  • \(100pts\ n\leq5*10^6,m\leq20\)

解析

\(10pts\)算法

用\(Kruskal\)搞复杂度为\(O(n^2logn)\),会\(TLE\)。

可以用\(O(n^2)\)的\(Prim\)算法。

for(rg int i=1;i<=n;i++) Dis[i]=-Inf;
Dis[1]=0; ll Ans=0;
for(rg int i=1;i<=n;i++)
{ int Now=0,Maxd=-Inf;
for(rg int j=1;j<=n;j++)
if(!Blue[j]&&Dis[j]>Maxd) Now=j,Maxd=Dis[j];
Ans+=Maxd,Blue[Now]=1;
for(rg int j=1;j<=n;j++)
if(!Blue[j]) Dis[j]=Max(Dis[j],A[Now]&A[j]);
}

值得注意的是初始值极小,永远在取\(\max\)。

\(15pts\)算法

说明点权只能为\(0\)或\(1\)。

\(x\)个\(1\)点最多能连\(x-1\)条边。

\(ans=x-1\)。

\(25pts\)算法

注意到如果数值\(p\)重复出现\(x\)次,答案加上\((x-1)*p\)(相同数值相互连边)后,就可把该数值视为唯一。

于是\(n\)降到\(O(2^{12})=4096\),又可以\(Prim\)啦。

\(55pts\)算法

注意到若\(a\&b=b\),在\((a,b)\)间连边一定最优。于是可以找出每个点\(b\)的子集(复杂度\(O(15n)\)),若存在,优先建边并统计答案。

然后由于剩下点互不包含,点数会降到\(C_m^{m/2}\)(因为最多的情况是选所有有\(m/2\)个\(1\)的二进制数,而这些数因为\(1\)数量相同,肯定互不包含),似乎又可以暴力了。

\(90pts\)算法

这个算法很神仙。

论如何求集合中选一个数与当前值进行位运算的\(\max\)

(当然先\(orz\)CJrank1yyb)

如果是暴力的话,我们的方法有两种:

  • 对于当前数\(x\),暴力计算所有存在的数\(a_i\)中,\(x\bigoplus i\)的最大值,这样的复杂度是\(O(2^{16})\)。
  • 对于每个可能出现的数维护一个当前所有数的最大值。即每次插入时,暴力计算所有的答案的最大值,这样子询问的时候可以\(O(1)\)查询。

两种方法一种是插入\(O(1)\),询问\(O(n)\),另外一个是插入\(O(n)\),询问\(O(1)\)。

我们把两种东西结合一下,这样可以得到一个\(O(n\sqrt{n})\)的方法。

我们对于每个数从中间分开,拆成前\(8\)个二进制位和后\(8\)个二进制位。

这样子我们可以预处理一个数组\(t[i][j]\),

表示集合中一个前\(8\)位是\(i\)的数,后\(8\)位与\(j\)进行位运算的最大值。

因为位运算是可以按位贪心的,所以对于查询一个数\(x\),我们把它拆成\(x=a×2^8+b\)。

每次先暴力\(for\)所有可能的前\(8\)位,找到与\(a\)能够构成最大值的那些数,然后对于找到的所有数的前八位\(p\),直接查\(t[p][b]\)。

因为前八位更大的数一定更大,那么影响结果的就只剩下后八位了,

把两个部分拼接起来就好了。

这样子暴力\(for\)前八位的复杂度是\(O(2^8)\),查找后面部分最大值的复杂度是\(O(1)\)

所以这样子总的复杂度\(O(2^8)\)。

而对于集合中插入一个数,前\(8\)位唯一确定,每次只需要预处理后\(8\)位的结果。

时间复杂度还是\(O(2^8)\),总的复杂度还是\(O(\sqrt{n})\)。

最后记得反过来再跑一遍。

照搬该方法到本题,复杂度为\(O(n\sqrt{n})\)。

注意一下连边。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define re register
#define il inline
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=1e9+7,N=1e5+100;
int a[N],h[N],cnt,n,m,k,f[N],p=1,base,nxt[N],t[1<<11][1<<11],c[1<<11][1<<11],cp[N],tl[N],ma[N],fa[N];
ll ans;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int find(re int x){return fa[x]?fa[x]=find(fa[x]):x;}
il void link(re int u,re int v)
{
re int fu=find(u),fv=find(v);
if(fu^fv)
{
nxt[tl[fv]]=h[fu];
tl[fv]=tl[fu];
fa[fu]=fv;
++p;
}
}
il void solve()
{
memset(f,0,sizeof(f));memset(t,-1,sizeof(t));memset(ma,-1,sizeof(ma));
fp(i,1,n)
if(!fa[i])
{
for(re int j=h[i];j;j=nxt[j])
{
re int x=a[j]>>k,y=a[j]&base;//x代表前一半位,y代表后一半位
fp(z,0,(1<<m-k)-1)//枚举前一半位并统计答案
if(f[z])
{
re int ss=a[j]&t[z][y]|(z<<k&a[j]);//组合
if(ss>ma[i]) ma[i]=ss,cp[i]=c[z][y];
}
}
for(re int j=h[i];j;j=nxt[j])
{
re int x=a[j]>>k,y=a[j]&base;f[x]=1;//标记其存在
fp(z,0,(1<<k)-1)//枚举后一半位并处理
if((y&z)>t[x][z]) t[x][z]=y&z,c[x][z]=i;
}
}
memset(f,0,sizeof(f));memset(t,0,sizeof(t));
fq(i,n,1)
if(!fa[i])
{
for(re int j=h[i];j;j=nxt[j])
{
re int x=a[j]>>k,y=a[j]&base;
fp(z,0,(1<<m-k)-1)
if(f[z])
{
re int ss=a[j]&t[z][y]|(z<<k&a[j]);
if(ss>ma[i]) ma[i]=ss,cp[i]=c[z][y];
}
}
for(re int j=h[i];j;j=nxt[j])
{
re int x=a[j]>>k,y=a[j]&base;f[x]=1;
fp(z,0,(1<<k)-1)
if((y&z)>t[x][z]) t[x][z]=y&z,c[x][z]=i;
}
}
fp(i,1,n)
if(!fa[i])
{
re int u=find(i),v=find(cp[i]);
if(u^v) ans+=ma[i],link(i,cp[i]);
}
}
int main()
{
freopen("mst.in","r",stdin);
freopen("mst.out","w",stdout);
n=gi();m=gi();k=m/2;base=(1<<k)-1;
fp(i,1,n)
{
a[i]=gi();
h[i]=tl[i]=i;
}
while(p<n) solve();
printf("%lld\n",ans);
fclose(stdin);
fclose(stdout);
return 0;
}

\(100pts\)算法

倒序枚举用于连接的边权\(p\),用\(a_p\)表示\(p\)的最大超集(只多一个\(1\))所在联通块的代表元。枚举\(p\)的另一超集(只多一个\(1\)),若两者不在同一联通块,合并之。从大到小保证最优性。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define re register
#define il inline
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=1e9+7,N=1e5+100;
int a[1<<21],h[N],cnt,n,m,f[1<<21];
ll ans;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int find(re int x){return f[x]?f[x]=find(f[x]):x;}
int main()
{
freopen("mst.in","r",stdin);
freopen("mst.out","w",stdout);
n=gi();m=gi();
fp(i,1,n)
{
re int x=gi();
if(a[x]) ans+=x;
a[x]=x;
}
fq(t,(1<<m)-1,0)
{
re int &u=a[t];
for(re int i=0;!u&&i<m;i++) u=a[t|(1<<i)];
if(!u) continue;
fp(i,0,m-1)
{
re int v=a[t|(1<<i)],fu=find(u),fv=find(v);
if(v&&fu!=fv) ans+=t,f[fv]=fu;
}
}
printf("%lld\n",ans);
fclose(stdin);
fclose(stdout);
return 0;
}

mst的更多相关文章

  1. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  2. 基于MST的立体匹配及相关改进(A Non-Local Cost Aggregation Method for Stereo Matching)

    怀着很纠结的心情来总结这篇论文,这主要是因为作者提虽然供了源代码,但是我并没有仔细去深究他的code,只是把他的算法加进了自己的项目.希望以后有时间能把MST这一结构自己编程实现!! 论文题目是基于非 ...

  3. BZOJ 2654 & 玄学二分+MST

    题意: 给一张图,边带权且带颜色黑白,求出一棵至少包含k条白边的MST SOL: 正常人都想优先加黑边或者是白边,我也是这么想的...你看先用白边搞一棵k条边的MST...然后维护比较黑边跟白边像堆一 ...

  4. LA 5713 秦始皇修路 MST

    题目链接:http://vjudge.net/contest/144221#problem/A 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不 ...

  5. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  6. [BZOJ2654]tree(二分+MST)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...

  7. CodeForces 125E MST Company

    E. MST Company time limit per test 8 seconds memory limit per test 256 megabytes input standard inpu ...

  8. 2015baidu复赛2 连接的管道(mst && 优先队列prim)

    连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. ACM/ICPC 之 判别MST唯一性-Kruskal解法(POJ1679)

    判别MST是否唯一的例题. POJ1679-The Unique MST 题意:给定图,求MST(最小生成树)是否唯一,唯一输出路径长,否则输出Not Unique! 题解:MST是否唯一取决于是否有 ...

  10. hdu 4756 MST+树形dp ****

    题意:给你n(n = 1000)个二维点,第一个点是power plant,还有n - 1个点是dormitories.然后现在知道有一条寝室到寝室的边是不能连的,但是我们不知道是哪条边,问这种情况下 ...

随机推荐

  1. .net core 中简单封装Dapper.Extensions 并使用sqlsuger自动生成实体类

    引言 由公司需要使用dapper  同时支持多数据库 又需要支持实体类 又需要支持sql 还需要支持事务 所以采用了 dapper + dapperExtensions  并配套 生成实体类小工具的方 ...

  2. UVA 674 Coin Change (完全背包)

    解法 dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的 代码 #include <bits/stdc++.h> using namespace std; int ...

  3. Linux学习笔记记录(二)

  4. LINUX-文件的权限 - 使用 "+" 设置权限,使用 "-" 用于取消

    ls -lh 显示权限 ls /tmp | pr -T5 -W$COLUMNS 将终端划分成5栏显示 chmod ugo+rwx directory1 设置目录的所有人(u).群组(g)以及其他人(o ...

  5. BZOJ 4919 [Lydsy1706月赛]大根堆 (SRM08 T3)

    [题解] 求一个序列的LIS有一个二分做法是这样的:f[i]表示长度为i的上升序列中最后一个数最小可以是多少,每次二分大于等于当前数字x的f[j],把f[j]修改为x:如果找不到这样的f[j],那就把 ...

  6. 3.6.5 空串与Null串

        空串""是长度为0的字符串.可以调用以下代码检查一个字符串是否为空:                 String s = "greeting";    ...

  7. JavaSE 学习笔记之网络编程(二十三)

    端口: 物理端口: 逻辑端口:用于标识进程的逻辑地址,不同进程的标识:有效端口:0~65535,其中0~1024系统使用或保留端口. java 中ip对象:InetAddress. import ja ...

  8. ViewService

    ViewService 在分布式系统中,最常见的场景就是主备架构.但是如果主机不幸宕机,如何正确的通知客户端当前后端服务器的状况成为一个值得研究的问题.本文描述了一种简单的模型用于解决此问题. 背景 ...

  9. [K/3Cloud] KSQL 关联表更新字段Update语法

    关联表更新字段 UPDATE tmp369faa3f7d224b0595670425008 as t1 SET FStatus=-1 where exists(select 1 from t_BD_S ...

  10. java中static学习总结

    <<java编程思想>>: 1.static方法就是没有this的方法. 2.在static方法内部非静态方法. 3.在没有创建对象的前提下,可以通过类本身来调用static修 ...