题目:http://poj.org/problem?id=3046

就是多重集组合数(分组背包优化);

从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/article/details/48110525

从意义的角度来考虑:

当 j<=a[i] 时,f[i][j] = f[i-1][j]  + f[i][j-1],就是分成了不选第 i 种物品和至少选一个第 i 种物品的情况,其中 f[i][j-1] 代表 j-1 后剩下的那一个物品一定是第 i 种;

当 j>a[i] 时,f[i][j] = f[i-1][j] + f[i][j-1] - f[i-1][j-1-a[i]],因为此时 j-1 后第 i 种物品可能仍然已经被选满( j - 1 >= a[i] ),无法再至少来一个 i 物品,所以减去 j-1 后 i 被选满的情况。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const maxn=1e5+,mod=1e6;
int n,m,st,ed,f[][maxn],a[],ans;
int main()
{
scanf("%d%d%d%d",&n,&m,&st,&ed);
for(int i=,x;i<=m;i++)
scanf("%d",&x),a[x]++;
f[][]=;f[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=ed;j++)
{
if(j<=a[i])f[i%][j]=(f[i%][j-]+f[(i+)%][j])%mod;
else f[i%][j]=(f[i%][j-]+f[(i+)%][j]-f[(i+)%][j--a[i]]+mod)%mod;//+mod
}
for(int j=st;j<=ed;j++)
(ans+=f[n%][j])%=mod;
printf("%d\n",ans);
return ;
}

poj3046 Ant Counting——多重集组合数的更多相关文章

  1. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  2. poj-3046 Ant Counting【dp】【母函数】

    题目链接:戳这里 题意:有A只蚂蚁,来自T个家族,每个家族有ti只蚂蚁.任取n只蚂蚁(S <= n <= B),求能组成几种集合? 这道题可以用dp或母函数求. 多重集组合数也是由多重背包 ...

  3. [poj3046][Ant counting数蚂蚁]

    题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...

  4. [poj3046]Ant Counting(母函数)

    题意: S<=x1+x2+...+xT<=B 0<=x1<=N1 0<=x2<=N2 ... 0<=xT<=NT 求这个不等式方程组的解的个数. 分析: ...

  5. 2019.01.02 poj3046 Ant Counting(生成函数+dp)

    传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...

  6. poj 3046 Ant Counting(多重集组合数)

    Ant Counting Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  7. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  8. POJ_3046_Ant_Counting_(动态规划,多重集组合数)

    描述 http://poj.org/problem?id=3046 n种蚂蚁,第i种有ai个,不同种类的蚂蚁可以相互区分,但同一种类的蚂蚁不能相互区分,从这些蚂蚁中取出s,s+1,s+2,...,b- ...

  9. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

随机推荐

  1. LA 3890 半平面交

    二分查询答案,判断每一个新形成的向量合在一块能否形成半平面交 #include <iostream> #include <cstdio> #include <cstrin ...

  2. POJ 2777 Count Color【线段树】

    题目大意:要求完成以下两个操作:1.将一个区间刷上一种颜色2.询问一段区间上有多少种颜色 思路:这两个操作线段树都可以很迅速的完成,具体做法是:线段树上每个节点存这个线段上的颜色数量,由于颜色数很少, ...

  3. 有向图欧拉回路个数 BEST定理

    有向图欧拉回路个数 BZOJ 3659 但是没有这道题了  直接贴一个别人的板子吧 欧拉回路:存在一条路径经过所有的边刚好1次 有向图欧拉回路存在充要条件:①图连通:②对于所有点都满足出度=入度 BE ...

  4. tyvj——P3524 最大半连通子图

    P3524 最大半连通子图 时间: 3000ms / 空间: 165536KiB / Java类名: Main 描述 输入格式 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如 ...

  5. 寒武纪camp Day3

    补题进度:9/10 A(多项式) 题意: 在一个长度为n=262144的环上,一个人站在0点上,每一秒钟有$\frac{1}{2}$的概率待在原地不动,有$\frac{1}{4}$的概率向前走一步,有 ...

  6. Ubuntu 16.04关闭Alt+鼠标左键移动窗口(转)

    1.打开终端,菜单-编辑-配置文件首选项-命令,勾上“以登录Shell方式运行命令”,重启终端. 2.在终端输入 gsettings get org.gnome.desktop.wm.preferen ...

  7. 【.Net Core 学习系列】-- EF Core 实践(Code First)

    一.开发环境: VS2015, .Net Core 1.0.0-preview2-003156 二解决方案: 新建项目: File --> New --> Project -->   ...

  8. eclipse发布项目到tomcat部署目录

    1.在eclipse下建立Dynamic Web Project工程zhgy,在使用eclipse中new一个tomcat,通过启动该tomcat来发布Dynamic Web Project的时候,其 ...

  9. DATASNAP清除僵死连接

    DATASNAP使用TCP/IP长连接的时候,由于诸如客户端非正常关闭的情况会造成中间件产生僵死SOCKET连接,随着时间的推移,僵死连接越来越多,造成中间件停止服务,表现为客户端无法连接中间件.DE ...

  10. Jmeter的几个关键配置文件

    1.配置文件位于bin目录下: 2.配置文件可能存在优先级关系,好像user.properties会覆盖jmeter.properties,一般修改配置都是修改或者添加user.properties, ...