【SDOI 2011】染色
【题目链接】
【算法】
树链剖分
【代码】
本题,笔者求最近公共祖先并没有用树链剖分“往上跳”的方式,而是用倍增法。笔者认为这样比较好写,代码可读性
比较高
此外,笔者的线段树并没有用懒惰标记,只要当前访问节点的线段总数为1,那么就下传
#include<bits/stdc++.h>
using namespace std;
#define MAXLOG 18
const int MAXN = 1e5 + ; int i,n,m,timer,x,y,c,t;
int dep[MAXN],fa[MAXN],size[MAXN],son[MAXN],
dfn[MAXN],top[MAXN],val[MAXN],pos[MAXN],anc[MAXN][MAXLOG];
vector<int> e[MAXN];
char opt[]; struct SegmentTree {
struct Node {
int l,r,sum,lcover,rcover;
} Tree[MAXN*];
inline void push_up(int index) {
Tree[index].lcover = Tree[index<<].lcover;
Tree[index].rcover = Tree[index<<|].rcover;
Tree[index].sum = Tree[index<<].sum + Tree[index<<|].sum;
if (Tree[index<<].rcover == Tree[index<<|].lcover) Tree[index].sum--;
}
inline void push_down(int index) {
Tree[index<<].sum = Tree[index<<|].sum = ;
Tree[index<<].lcover = Tree[index<<].rcover = Tree[index].lcover;
Tree[index<<|].lcover = Tree[index<<|].rcover = Tree[index].rcover;
}
inline void build(int index,int l,int r) {
int mid;
Tree[index].l = l;
Tree[index].r = r;
if (l == r) {
Tree[index].lcover = Tree[index].rcover = val[pos[l]];
Tree[index].sum = ;
return;
}
mid = (l + r) >> ;
build(index<<,l,mid);
build(index<<|,mid+,r);
push_up(index);
}
inline void modify(int index,int l,int r,int val) {
int mid;
if (Tree[index].l == l && Tree[index].r == r) {
Tree[index].lcover = Tree[index].rcover = val;
Tree[index].sum = ;
return;
}
if (Tree[index].sum == ) push_down(index);
mid = (Tree[index].l + Tree[index].r) >> ;
if (mid >= r) modify(index<<,l,r,val);
else if (mid + <= l) modify(index<<|,l,r,val);
else {
modify(index<<,l,mid,val);
modify(index<<|,mid+,r,val);
}
push_up(index);
}
inline int query(int index,int l,int r) {
int mid,t;
if (Tree[index].l == l && Tree[index].r == r) return Tree[index].sum;
if (Tree[index].sum == ) push_down(index);
mid = (Tree[index].l + Tree[index].r) >> ;
if (mid >= r) return query(index<<,l,r);
else if (mid + <= l) return query(index<<|,l,r);
else {
t = ;
if (Tree[index<<].rcover == Tree[index<<|].lcover) t = ;
return query(index<<,l,mid) + query(index<<|,mid+,r) - t;
}
}
inline int get(int index,int pos) {
int mid;
if (Tree[index].l == Tree[index].r) return Tree[index].lcover;
if (Tree[index].sum == ) push_down(index);
mid = (Tree[index].l + Tree[index].r) >> ;
if (mid >= pos) return get(index<<,pos);
else return get(index<<|,pos);
}
} T;
inline void dfs1(int x) {
int i,y;
anc[x][] = fa[x];
for (i = ; i < MAXLOG; i++) {
if (dep[x] < ( << i)) break;
anc[x][i] = anc[anc[x][i-]][i-];
}
size[x] = ;
for (i = ; i < e[x].size(); i++) {
y = e[x][i];
if (fa[x] != y) {
dep[y] = dep[x] + ;
fa[y] = x;
dfs1(y);
size[x] += size[y];
if (size[y] > size[son[x]]) son[x] = y;
}
}
}
inline void dfs2(int x,int tp) {
int i,y;
dfn[x] = ++timer;
pos[timer] = x;
top[x] = tp;
if (son[x]) dfs2(son[x],tp);
for (i = ; i < e[x].size(); i++) {
y = e[x][i];
if (fa[x] != y && son[x] != y)
dfs2(y,y);
}
}
inline int lca(int x,int y) {
int i,t;
if (dep[x] > dep[y]) swap(x,y);
t = dep[y] - dep[x];
for (i = ; i <= MAXLOG - ; i++) {
if (t & ( << i))
y = anc[y][i];
}
if (x == y) return x;
for (i = MAXLOG - ; i >= ; i--) {
if (anc[x][i] != anc[y][i]) {
x = anc[x][i];
y = anc[y][i];
}
}
return anc[x][];
}
inline void modify(int x,int y,int c) {
int tx = top[x],
ty = top[y];
while (tx != ty) {
T.modify(,dfn[tx],dfn[x],c);
x = fa[tx]; tx = top[x];
}
T.modify(,dfn[y],dfn[x],c);
}
inline int query(int x,int y) {
int tx = top[x],
ty = top[y],ans = ;
while (tx != ty) {
ans += T.query(,dfn[tx],dfn[x]);
if (T.get(,dfn[tx]) == T.get(,dfn[fa[tx]])) ans--;
x = fa[tx]; tx = top[x];
}
ans += T.query(,dfn[y],dfn[x]);
return ans;
} int main() { scanf("%d%d",&n,&m);
for (i = ; i <= n; i++) scanf("%d",&val[i]);
for (i = ; i < n; i++) {
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
} dfs1();
dfs2(,);
T.build(,,timer); while (m--) {
scanf("%s",opt);
if (opt[] == 'C') {
scanf("%d%d%d",&x,&y,&c);
t = lca(x,y);
modify(x,t,c); modify(y,t,c);
} else {
scanf("%d%d",&x,&y);
t = lca(x,y);
printf("%d\n",query(x,t)+query(y,t)-);
}
} return ;
}
【SDOI 2011】染色的更多相关文章
- [BZOJ 2243] [SDOI 2011] 染色 【树链剖分】
题目链接:BZOJ - 2243 题目分析 树链剖分...写了200+行...Debug了整整一天+... 静态读代码读了 5 遍 ,没发现错误,自己做小数据也过了. 提交之后全 WA . ————— ...
- BZOJ 2243 SDOI 2011染色
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 算法讨论: 树链剖分把树放到线段树上.然后线段树的每个节点要维护的东西有左端点的颜色 ...
- [SDOI 2011]染色
Description 题库链接 给定一棵有 \(n\) 个节点的无根树和 \(m\) 个操作,操作有 \(2\) 类: 将节点 \(a\) 到节点 \(b\) 路径上所有点都染成颜色 \(c\) : ...
- 解题: SDOI 2011 染色
题面 强行把序列问题通过树剖套在树上...算了算是回顾了一下树剖的思想=.= 每次树上跳的时候注意跳的同时维护当前拼出来的左右两条链的靠上的端点,然后拼起来的时候讨论一下拼接点,最后一下左右两边的端点 ...
- 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...
- [bzoj2286][Sdoi 2011]消耗战
[bzoj2286]消耗战 标签: 虚树 DP 题目链接 题解 很容易找出\(O(mn)\)的做法. 只需要每次都dp一遍. 但是m和n是同阶的,所以这样肯定会T的. 注意到dp的时候有很多节点是不需 ...
- [SDOI 2011]黑白棋
Description 题库链接 给出一个 \(1\times n\) 的棋盘,棋盘上有 \(k\) 个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 \( ...
- [SDOI 2011]消耗战
Description 题库链接 给你一棵 \(n\) 个节点根节点为 \(1\) 的有根树,有边权. \(m\) 次询问,每次给出 \(k_i\) 个关键点.询问切断一些边,使这些点到根节点不连通, ...
- [SDOI 2011]计算器
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
随机推荐
- hdu 1232水
#include<stdio.h> #define N 1000 int pre[N]; int find(int n ){ return pre[n]=n==pre[n]?n:find( ...
- HH的项链(codevs 2307)
题目描述 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此,他的 ...
- Codeforces936B. Sleepy Game
还好这场没打 MD什么破题 n<=100000,m<=200000的图问从s点出发能否走奇数条边到一个没有出度的点. 直观的想法:做一个bfs,$f(i,0/1)$表示从$s$出发到$i$ ...
- BZOJ1693: [Usaco2007 Demo]Asteroids
n<=500 *n的格子,给m<=10000个格子有人,一炮可以清掉一行或一列的人(莫名的爽!)求最少几炮干掉所有人. 经典二分图模型!行成点,列成点,一个点就连接一行一列,表示这一行或这 ...
- HDU 4651 (生成函数)
HDU 4651 Partition Problem : n的整数划分方案数.(n <= 100008) Solution : 参考资料: 五角数 欧拉函数 五边形数定理 整数划分 一份详细的题 ...
- poj1376 bfs,机器人
开始时候有点怕, 感觉什么也不会,不过静下来思考思考也就想出来了,一个简单的BFS即可,但是由于队列没有重判,一直爆队列(MLE!)下次一定要注意! (bfs第一次到达便最优?) #include&l ...
- 牛客网暑期ACM多校训练营(第三场)J 多边形与圆相交的面积
链接:https://www.nowcoder.com/acm/contest/141/J 题目描述 Eddy has graduated from college. Currently, he is ...
- D. Spongebob and Squares--cf599D(数学)
http://codeforces.com/problemset/problem/599/D 题目大意:给你一个数k 让你求一个n*m的矩形里面包含k个正方形 输出有几个这样的矩形 分别是什么 ...
- 2017多校Round10(hdu6171~hdu6181)
补题进度:5/11 1001(双向BFS) 题意: 给你一个类似移子游戏,给你初始状态和终止状态,问初始状态到终止状态至少要移多少步,如果步数>20就-1 分析: 很明显的BFS了,不过普通的B ...
- BZOJ4555求和(cdq分治+NTT)
题意: 输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果.1 ≤ n ≤ 100000 其中S(i,j)是第二类Stirling数,即有i个球,丢到j个盒子中,要求盒子不 ...