The stack frame at the top of the stack is for the currently executing routine. The stack frame usually includes at least the following items (in push order):

  • the arguments (parameter values) passed to the routine (if any);
  • the return address back to the routine's caller (e.g. in the DrawLine stack frame, an address into DrawSquare's code); and
  • space for the local variables of the routine (if any).

 

Call stack layout

Stack and frame pointers[edit]

When stack frame sizes can differ, such as between different functions or between invocations of a particular function, popping a frame off the stack does not constitute a fixed decrement of the stack pointer. At function return, the stack pointer is instead restored to the frame pointer, the value of the stack pointer just before the function was called. Each stack frame contains a stack pointer to the top of the frame immediately below. The stack pointer is a mutable register shared between all invocations. A frame pointer of a given invocation of a function is a copy of the stack pointer as it was before the function was invoked.[2]

The locations of all other fields in the frame can be defined relative either to the top of the frame, as negative offsets of the stack pointer, or relative to the top of the frame below, as positive offsets of the frame pointer. The location of the frame pointer itself must inherently be defined as a negative offset of the stack pointer.

Storing the address to the caller's frame[edit]

In most systems a stack frame has a field to contain the previous value of the frame pointer register, the value it had while the caller was executing. For example, the stack frame of DrawLine would have a memory location holding the frame pointer value that DrawSquare uses (not shown in the diagram above). The value is saved upon entry to the subroutine and restored upon return. Having such a field in a known location in the stack frame enables code to access each frame successively underneath the currently executing routine's frame, and also allows the routine to easily restore the frame pointer to the caller's frame, just before it returns.

Lexically nested routines[edit]

Further information: Nested function and Non-local variable

Programming languages that support nested subroutines also have a field in the call frame that points to the stack frame of the latest activation of the procedure that most closely encapsulates the callee, i.e. the immediate scope of the callee. This is called an access link or static link (as it keeps track of static nesting during dynamic and recursive calls) and provides the routine (as well as any other routines it may invoke) access to the local data of its encapsulating routines at every nesting level. Some architectures, compilers, or optimization cases store one link for each enclosing level (not just the immediately enclosing), so that deeply nested routines that access shallow data do not have to traverse several links; this strategy is often called a "display".[3]

Access links can be optimized away when an inner function does not access any (non-constant) local data in the encapsulation, as is the case with pure functions communicating only via arguments and return values, for example. Some historical computers, such as the Burroughs large systems, had special "display registers" to support nested functions, while compilers for most modern machines (such as the ubiquitous x86) simply reserve a few words on the stack for the pointers, as needed.

Overlap[edit]

For some purposes, the stack frame of a subroutine and that of its caller can be considered to overlap, the overlap consisting of the area where the parameters are passed from the caller to the callee. In some environments, the caller pushes each argument onto the stack, thus extending its stack frame, then invokes the callee. In other environments, the caller has a preallocated area at the top of its stack frame to hold the arguments it supplies to other subroutines it calls. This area is sometimes termed the outgoing arguments area or callout area. Under this approach, the size of the area is calculated by the compiler to be the largest needed by any called subroutine.

Call stack Structure的更多相关文章

  1. 线性数据结构之栈——Stack

    Linear data structures linear structures can be thought of as having two ends, whose items are order ...

  2. 【LeetCode OJ】Evaluate Reverse Polish Notation

    Problem link: http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/ According to the wik ...

  3. MakeObjectInstance的前世今生(关键是ECX的何时入栈以及Self指针何时存储的)

    高手们的文章有很大启发,但是总有些小错,也有没交代清楚的,以下是我的理解: 编译器编译MainWndProc的时候,它是一个正常Delphi普通函数,MakeObjectInstance对它做变换是运 ...

  4. java建立二叉树,递归/非递归先序遍历,递归/非递归中序遍历,层次遍历

    import java.util.LinkedList; import java.util.Scanner; import java.util.Stack; //structure of binary ...

  5. [转] iOS ABI Function Call Guide

    source: apple ARMv6 Function Calling Conventions When functions (routines) call other functions (sub ...

  6. iOS - Block底层解析

    Block是iOS开发中一种比较特殊的数据结构,它可以保存一段代码,在合适的地方再调用,具有语法简介.回调方便.编程思路清晰.执行效率高等优点,受到众多猿猿的喜爱.但是Block在使用过程中,如果对B ...

  7. allego 输出报告说明

    List of Available Reports Assigned Function Report Lists all assigned functions, sorted by function ...

  8. SECD machine

    SECD machine 对程序语言理论的理解 程序语言理论主要研究语法.语义及语言的实现.编程语言有语法,各种数学逻辑.结构化数据都有语法.乔姆斯基的语言体系及巴科斯范式是语法分析的基础,语法分析将 ...

  9. 【deep learning精华部分】稀疏自编码提取高阶特征、多层微调完全解释及代码逐行详解

    我们前面已经讲了如何训练稀疏自编码神经网络,当我们训练好这个神经网络后,当有新的样本输入到这个训练好的稀疏自编码器中后,那么隐藏层各单元的激活值组成的向量就可以代表(因为根据稀疏自编码,我们可以用来恢 ...

随机推荐

  1. css的white-space属性导致了空格问题——查看十六进制发现2020变成了c2a0

    今天发现了一个奇怪的问题.从文本编辑器(notepad++)中把一段文本输入到easyui的textbox文本框(textarea)中,不进行不论什么的操作.直接再从文本框中把文本拷贝出来贴到文本编译 ...

  2. [NOI2015Day1]解题报告

    今天一起做NOI的题. 我仅仅想说SunshinAK了好神啊. T3数据好坑啊,打表竟然被编译环境卡掉了... T1:程序自己主动分析 (http://www.lydsy.com/JudgeOnlin ...

  3. WebSphere报错指南

    看了下面的文章,泥坑会叫我标题党,没错我就是啊. 1.was日志路径 ${WebSphere根路径}/AppServer/profiles/AppSrv01/logs/,比如说我的路径就是/opt/I ...

  4. HDU 1018 Big Number (log函数求数的位数)

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  5. 【bzoj1303】[CQOI2009]中位数图

    一个大于b的数和一个小于b的数可以互相抵消,所以我们用1和-1表示. 从b向两边扩展,left[i]表示b左边抵消后有i个数比b小的可能数,right[i]表示b右边抵消后有i个数比b大的可能数. a ...

  6. luogu2540 斗地主增强版

    题目大意 给你一副手牌,没有飞机带翅膀,按斗地主的规则,求将所有牌打出的最少次数. 题解 先不考虑顺子 我们已经知道花色对牌没有影响,那么如果不考虑顺子,每个牌具体是什么数字我们也用不着知道,我们关心 ...

  7. Keil和IAR——使用笔记

    1. 几个宏的定义 Keil和IAR均用到以下三种宏定义,分别是:USE_STDPERIPH_DRIVER——表示使用ST提供的标准外设固件库:STM32F40_41xxx——作为芯片的判断:VECT ...

  8. 【Silverlight】Bing Maps学习系列(一):开发前的准备工作

    [Silverlight]Bing Maps学习系列(一):开发前的准备工作 微软推出的Bing Maps地图引擎,对外开放了Silverlight和Ajax两种客户端API,同时微软针对全球地图还推 ...

  9. Java 反射 —— 运行时的类型信息

    1. 反射机制的由来 RTTI 机制可以告知某个对象的确切类型,但有一个前提,该类型在编译时必须已知(编译器在编译时打开和检查 .class 文件以获取类型信息).似乎是个很宽松的限制,但假如你获取了 ...

  10. 并不对劲的spoj1811

    题意是求两个字符串的lcs,两个串都只包含小写字母. 本题既可以用后缀自动机,又可以用后缀数组. 对于后缀自动机,就是一道模板题,直接对于一个字符串建后缀自动机再用另一个串查询就行. 对于后缀数组,其 ...