题意

不带修改,查询数列[1,n]中[l,r]内的出现正偶数次的数的个数, 数列中的数 <= 1e5, n <= 1e5, 强制在线

算法

​ 查询的内容: 区间内出现正偶数次的数的个数.
这个内容不具有可合并性, 像区间众数一样…. (知道[l,mid]和[mid+1,r]中 的答案, 不能知道[l,r]中的答案)

​ 主席树没有想法….看来只能暴力了???

​ 对!! 我们可以写一个O(nn−−√)O(nn)的暴力—分块!!!

​ 具体说, 我们可以先暴力 开个桶 预处理每两块中间的答案, 复杂度 O(nn−−√)O(nn)

​ (当然不能把桶扫一遍啦…因为每次指针移动桶内计数器只改变1, 所以我们可以根据前一块的答案 略加修改 得出后一块的答案….这个在大佬看来就是暴力?? 但是我没有想到)

​ 对于块外的情况, 我们只需统计块外数对块内的影响. 由于块外数字最多只有2n−−√2n 个, 所以我们只需要知道块内数字出现的次数(通过前缀和得到), 然后开桶暴力统计块外数字即可算出影响.

经验总结

​ 这道题出题人真毒瘤, 卡掉了O(nn−−√log(n))O(nnlog(n))的算法, 只让O(nn−−√)O(nn)的算法过.

​ 一开始, 我查询时开桶扫描, 但是每次都把桶清空一遍….TLE了

​ 之后 , 我放弃了 开桶, 改为排序后统计次数.. 被卡了

​ 但是我没想到一点… 将桶初始化时不要memset啊…只需要把这2n−−√2n个数在桶内位置清零就好了…这样我才写出了正解….

​ 最后 , 这道题卡内存, 但是BZOJ 会把MLE 显示为TLE….太坑了….

代码

#include<bits/stdc++.h>
using namespace std; int read(){int f = 1; char c = getchar();int ans = 0;while(!isdigit(c)){if(c == '-')f = -1;c = getchar();}while( isdigit(c)){ans = ans*10 + c - '0';c = getchar();}ans *= f; return ans;}
//templates const int maxn = 100005, mxsiz = 265;
int f[mxsiz][mxsiz], g[mxsiz][maxn];
int a[maxn], n, q, c, sizB, cntB;
int bl[maxn], st[maxn], ed[maxn];
int bucket[maxn]; void precalc(int curB){
for(int i = 1; i <= c; i++) g[curB][i] = g[curB - 1][i];
for(int i = curB*sizB - sizB + 1; i <= min(curB*sizB, n); i++){
//if(curB == 317)printf("%d\n", a[i]);
g[curB][ a[i] ]++;
} memset(bucket, 0, sizeof bucket);
int ans = 0;
for(int i = curB*sizB - sizB + 1; i <= n; i++){
bucket[a[i]]++;
if(bucket[a[i]] != 1){
ans += (bucket[ a[i] ] & 1) ? -1 : 1;
} if(ed[ i ] == i) f[curB][ bl[i] ] = ans;
}
} void init(){
n = read(), c = read(), q = read();
for(int i = 1; i <= n; i++)
a[i] = read();
cntB = pow(n, 0.5), cntB = min(cntB, 255);
if(n % cntB == 0) sizB = n/cntB;
else sizB = n / cntB + 1;
for(int i = 1; i <= n; i++) bl[i] = (i-1) / sizB + 1;
for(int i = 1; i <= n; i++) st[i] = (bl[i] - 1)*sizB + 1, ed[i] = min(bl[i]*sizB, n); for(int i = 1; i <= cntB; i++) precalc(i);
} void solve(){
int ans = 0;
while(q--){
int l = read(), r = read();
l = (l + ans)%n + 1, r = (r+ans)%n+1;
if(l > r) swap(l, r); ans = 0;
if(r - l <= 2*sizB){
for(int i = l; i <= r; i++) bucket[ a[i] ] = 0;
for(int i = l; i <= r; i++){
bucket[a[i]]++;
if(bucket[a[i]] != 1)
ans += (bucket[ a[i] ] & 1) ? -1 : 1;
} printf("%d\n", ans);
} else {
int lbl = bl[l], rbl = bl[r];
if(l != st[l]) lbl++;
if(r != ed[r]) rbl--;
for(int i = l; i < lbl*sizB - sizB + 1; i++) bucket[a[i]] = g[rbl][a[i] ] - g[lbl -1][a[i] ];
for(int i = rbl*sizB + 1; i <= r; i++) bucket[a[i]] = g[rbl][a[i] ] - g[lbl -1][a[i] ]; ans = f[lbl][rbl]; for(int i = l; i < lbl*sizB - sizB + 1; i++) {
bucket[a[i]]++;
if(bucket[a[i]] != 1)
ans += (bucket[ a[i] ] & 1) ? -1 : 1;
}
for(int i = rbl*sizB + 1; i <= r; i++) {
bucket[a[i]]++;
if(bucket[a[i]] != 1)
ans += (bucket[ a[i] ] & 1) ? -1 : 1;
} printf("%d\n", ans);
} }
}
signed main(){ init();
solve(); return 0;
}

BZOJ2821 作诗(Poetize) 分块的更多相关文章

  1. BZOJ2821 作诗(Poetize) 【分块】

    BZOJ2821 作诗(Poetize) Description 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI ...

  2. 【分块】BZOJ2821 作诗(Poetize)

    2821: 作诗(Poetize) Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 3265  Solved: 951[Submit][Status][ ...

  3. BZOJ 2821: 作诗(Poetize)( 分块 )

    分块,分成N^0.5块.O(N^1.5)预处理出sm[i][j]表示前i块中j的出现次数, ans[i][j]表示第i~j块的答案. 然后就可以O(N^0.5)回答询问了.总复杂度O((N+Q)N^0 ...

  4. 【BZOJ2821】作诗(Poetize) 分块

    Description 神犇SJY虐完HEOI之后给傻×LYD出了一题:SHY是T国的公主,平时的一大爱好是作诗.由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次, ...

  5. 2018.09.30 bzoj2821: 作诗(Poetize)(分块)

    传送门 分块经典题目. 先将数列分块. 然后预处理出每两个块之间有多少个数出现了正偶数次. 这样查询的时候对于中间的完整块直接用预处理出的数组搞定. 剩下的暴力枚举求解. 代码: #include&l ...

  6. BZOJ2821 作诗(Poetize) 主席树 bitset

    原文链接https://www.lydsy.com/JudgeOnline/problem.php?id=2821 题目传送门 - BZOJ2821 题意 $n$ 个数,$m$ 组询问,每次问 $[l ...

  7. bzoj2821: 作诗(Poetize)

    分块 分sqrt(n)块 F[i][j]表示块i到块j的答案 s[i][j]表示数字i在前j块内出现了几次 #include <iostream> #include <cstdio& ...

  8. BZOJ2821 作诗(分块)

    和区间众数几乎一模一样的套路. // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include&l ...

  9. BZOJ 2821作诗(Poetize) 分块

    Description 有一个长度为n的序列,序列每个元素的范围[1,c],有m个询问x y,表示区间[x,y]中出现正偶数次的数的种类数. Solution 大力分块解决问题. 把序列分块,f[i] ...

随机推荐

  1. Intenet 地址

    java.net.InetAddress类是java对Ip地址(包括ipv4和ipv6)的高层表示,大多数其他网络类都要用到这个类,包括Socket, ServerSocket, URL, Datag ...

  2. laravel 兜底路由

    在 Laravel 5.6 中,引入了兜底路由功能.所谓兜底路由,就是当路由文件中定义的所有路由都无法匹配用户请求的 URL 时,用来处理用户请求的路由,在此之前,Laravel 都会通过异常处理器为 ...

  3. Wireless Penetration Testing(7-11 chapter)

    1.AP-less WPA-Personal cracking 创建一个honeypoint  等待链接,特点在于不需要攻击致使链接的客户端掉线,直接获取了流量的握手包. 2.Man-in-the-M ...

  4. python3 HTMLTestRunner.py

    """ A TestRunner for use with the Python unit testing framework. It generates a HTML ...

  5. idea svn配置报错:Can't use Subversion command line client:svn

    1. 在Intellij IDEA里checkout东西时出先这个错误提示:Can't use Subversion command line client:svnSubversion command ...

  6. excel 中怎么让两列姓名相同排序(转)

    如图,A列B列不动,C列和D列行值不变,以A列姓名为主让C列姓名和A列相同姓名的对齐(行),D行跟着C行不变. 在E1输入公式=MATCH(C1,A:A,0)然后下拉,接著选中C,D,E列,以E列为标 ...

  7. ElasticSearch文档及分布式文档存储

    1.什么是文档? 文档由索引(_index),类型(_type),唯一标识(_id) 组成,我们为 _index(索引) 分配相关逻辑地址分片,该索引下的数据会根据索引以及类型计算哈希来分配数据存储的 ...

  8. IT设备服务监控的方法论

    有方法论提导,在技战术方面才不会偏离目录. 使用服务级别作为关键语,召示着承诺和责任. https://www.circonus.com/2018/06/comprehensive-container ...

  9. 移动端开发demo—移动端web相册(一)

    本文主要是介绍开发移动端web相册这样一案例用到的前置知识. 一.移动端样式 移动端更接近手机原生的方式. 如下是一个angular mobile的demo的例子: 移动端demo做成这样的好处: 在 ...

  10. 【译】学习JavaScript中提升、作用域、闭包的终极指南

    这似乎令人惊讶,但在我看来,理解JavaScript语言最重要和最基本的概念是理解执行上下文.通过正确学习它,你将很好地学习更多高级主题,如提升,作用域链和闭包.考虑到这一点,究竟什么是"执 ...