Problem

给定一个字符串数的二进制表示(不含前导0)s(长度不超过5000),

对于一个数n(初值为0),可以进行以下两种操作:

1.将n的二进制表示(无前导0)写到已经写的串的后面.

2.n加上1.

问组成s的不同方法数以及最少用多少次操作能组成串s.

Solution

对于第一问:

用f[i][j]表示最后一个数是j+1到i的方案数,g[i][j]表示操作1的个数

所以f[i][j]+=f[j][k](k < j < i 且 k到j的数小于j到i的数) ,因为如果k到j的位数比j到i的位数少,则k到j的数必定小于j到i的数

所以可以用前缀和优化,再在位数相等时特判一下

对于第二问:

我们可以知道,如果第二个操作的次数都大于总位数了,那么便是没有意义的

所以在有数的情况下,我们只要枚举后16位的转移,这是不会爆int的

但如果后16位的转移没法转移(不能有前导0),那么我们需要找到最后一个可以转移的地方来转移

那么所有的操作数就是最后的那个数加上操作1的个数

Notice

判断大小要用O(1),先预处理一下

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, mo = 1e9 + 7, N = 5005;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int f[N][N], g[N][N], f_sum[N][N], g_min[N][N], T[N], S[N], mi[N], Same[N][N];
char st[N];
int cmp(int b1, int b2, int len)
{
int t = Same[b1][b2];
if (t >= len) return 1;
return T[b1 + t] < T[b2 + t];
}
int sqz()
{
scanf("%s", st + 1);
int n = strlen(st + 1);
rep(i, 1, n) T[i] = st[i] - '0';
mi[0] = 1;
rep(i, 1, n)
{
S[i] = (S[i - 1] * 2 + T[i]) % mo;
mi[i] = mi[i - 1] * 2 % mo;
}
per(i, n, 1)
per(j, n, 1)
if (T[i] == T[j]) Same[i][j] = Same[i + 1][j + 1] + 1;
else Same[i][j] = 0;
rep(i, 1, n)
{
f[i][0] = f_sum[i][0] = g[i][0] = g_min[i][0] = 1;
rep(j, 1, i - 1)
{
g[i][j] = g_min[i][j] = INF;
if (T[j + 1] == 1)
{
int k = j - (i - j);
if (k < -1) k = -1;
f[i][j] = (f[i][j] + f_sum[j][k + 1]) % mo;
g[i][j] = min(g[i][j], g_min[j][k + 1] + 1) % mo;
if (k + 1 && T[k + 1] && cmp(k + 1, j + 1, i - j))
{
f[i][j] = (f[i][j] + f[j][k]) % mo;
g[i][j] = min(g[i][j], g[j][k] + 1) % mo;
}
f_sum[i][j] = (f_sum[i][j] + f[i][j]) % mo;
g_min[i][j] = min(g_min[i][j], g[i][j]);
}
}
g_min[i][i] = INF;
per(j, i - 1, 0)
{
f_sum[i][j] = (f_sum[i][j] + f_sum[i][j + 1])% mo;
g_min[i][j] = min(g_min[i][j], g_min[i][j + 1]);
}
}
int ans = INF;
rep(i, 1, min(16, n)) ans = min(ans, g[n][n - i] + (int)((S[n] - (ll)S[n - i] * mi[i]) % mo + mo) % mo) % mo;
if (ans == INF)
rep(i, 17, n)
if (g[n][n - i] != INF)
{
ans = g[n][n - i] + (int)((S[n] - (ll)S[n - i] * mi[i]) % mo + mo) % mo;
break;
}
printf("%d\n%d\n", f_sum[n][0], ans);
}

[Codeforces477D]Dreamoon and Binary的更多相关文章

  1. Codeforces Round #272 (Div. 1)D(字符串DP)

    D. Dreamoon and Binary time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  2. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  3. ILJMALL project过程中遇到Fragment嵌套问题:IllegalArgumentException: Binary XML file line #23: Duplicate id

    出现场景:当点击"分类"再返回"首页"时,发生error退出   BUG描述:Caused by: java.lang.IllegalArgumentExcep ...

  4. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  5. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  6. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  7. Leetcode: Convert sorted list to binary search tree (No. 109)

    Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...

  8. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  9. [LeetCode] Binary Watch 二进制表

    A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bottom ...

随机推荐

  1. 分治法——归并排序(mergesort)

    首先上代码. #include <iostream> using namespace std; int arr[11]; /*两个序列合并成一个序列.一共三个序列,所以用 3 根指针来处理 ...

  2. 内置函数_map、filter

     1.map   #循环帮你调用函数 map(makir,dir_names)     #生成器,结果是一个内存地址.为了节省内存,每次循环时,就按照定义的规则去生成一个数据,循环一次释放一次生成的数 ...

  3. nginx 高并发优化参数

    关于内核参数的优化: net.ipv4.tcp_max_tw_buckets = 6000timewait的数量,默认是180000.net.ipv4.ip_local_port_range = 10 ...

  4. Python3 pip命令报错:Fatal error in launcher: Unable to create process using '"'

    Python3 pip命令报错:Fatal error in launcher: Unable to create process using '"' 一.问题 环境:win7 同时安装py ...

  5. koa2 中 cookie 存在的中文问题

    koa2  中的 cookie 没办法直接设置中文,会报错 ‘ argument value is invalid ’ 解决办法: 先将它转成 ‘ base64 ’ 编码来存储 new Buffer( ...

  6. JDK1.7安装和配置及注意事项

    要求 必备知识 windows 7 基本操作. 运行环境 windows 7 下载地址 环境下载 下载JDK 下载地址:http://www.oracle.com/technetwork/java/j ...

  7. centos6.5下安装Nginx

    链接: https://www.jb51.net/article/118595.htm

  8. mvc 之 RouteConfig配置

    //这里没有使用对用的指定参数 /Day_1:表示解决方案的名称,意思是默认找到该项目解决方案目录下的controllers进行匹配 routes.MapRoute( "Default&qu ...

  9. P4726 【模板】多项式指数函数

    思路 按照式子计算即可 \[ F(x)=F_0(x)(1-\ln F_0(x) +A(x)) \] 代码 // luogu-judger-enable-o2 #include <cstdio&g ...

  10. Centos7 安装并配置redis

    一. 安装 操作系统:Centos 7. 最小化安装 redis版本: 4.0.2 服务器地址:*** 安装过程: 安装wget, yum -y install wget 2.  下载redis wg ...