Python多进程并发操作中进程池Pool的应用
Pool类
在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时进程池就派上用场了。
Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。
下面介绍一下multiprocessing 模块下的Pool类下的几个方法
apply()
函数原型:
apply(func[, args=()[, kwds={}]])
该函数用于传递不定参数,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不在出现)。
apply_async()
函数原型:
apply_async(func[, args=()[, kwds={}[, callback=None]]])
与apply用法一样,但它是非阻塞且支持结果返回进行回调。
map()
函数原型:
map(func, iterable[, chunksize=None])
Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。
注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。
close()
关闭进程池(pool),使其不在接受新的任务。
terminate()
结束工作进程,不在处理未处理的任务。
join()
主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。
multiprocessing.Pool类的实例:

执行结果:

上例是一个创建多个进程并发处理与顺序执行处理同一数据,所用时间的差别。从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。
程序中的r1表示全部进程执行结束后全局的返回结果集,run函数有返回值,所以一个进程对应一个返回结果,这个结果存在一个列表中,也就是一个结果堆中,实际上是用了队列的原理,等待所有进程都执行完毕,就返回这个列表(列表的顺序不定)。
对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了。
再看一个实例:

执行结果:

再次执行结果如下:

结果中为什么还有空行和没有折行的数据呢?其实这跟进程调度有关,当有多个进程并行执行时,每个进程得到的时间片时间不一样,哪个进程接受哪个请求以及执行完成时间都是不定的,所以会出现输出乱序的情况。那为什么又会有没这行和空行的情况呢?因为有可能在执行第一个进程时,刚要打印换行符时,切换到另一个进程,这样就极有可能两个数字打印到同一行,并且再次切换回第一个进程时会打印一个换行符,所以就会出现空行的情况。
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。这里有一个简单的例子:

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有worker没有执行完,则会抛出AssertionError异常。
利用multiprocessing下的Pool可以很方便的同时自动处理几百或者上千个并行操作,脚本的复杂性也大大降低。
Python多进程并发操作中进程池Pool的应用的更多相关文章
- [转]Python多进程并发操作中进程池Pool的应用
Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...
- Python多进程并发操作进程池Pool
目录: multiprocessing模块 Pool类 apply apply_async map close terminate join 进程实例 multiprocessing模块 如果你打算编 ...
- Python多进程库multiprocessing创建进程以及进程池Pool类的使用
问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bag ...
- Python多进程库multiprocessing中进程池Pool类的使用[转]
from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...
- python学习笔记——multiprocessing 多进程组件 进程池Pool
1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...
- Python 之并发编程之manager与进程池pool
一.manager 常用的数据类型:dict list 能够实现进程之间的数据共享 进程之间如果同时修改一个数据,会导致数据冲突,因为并发的特征,导致数据更新不同步. def work(dic, lo ...
- python 使用进程池Pool进行并发编程
进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到mu ...
- Python 多进程编程之 进程间的通信(在Pool中Queue)
Python 多进程编程之 进程间的通信(在Pool中Queue) 1,在进程池中进程间的通信,原理与普通进程之间一样,只是引用的方法不同,python对进程池通信有专用的方法 在Manager()中 ...
- python 进程池pool简单使用
平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...
随机推荐
- Shell 文本处理命令
命令:cut –d’:’ -f1, 文件名 #切割处文件列的参数. -d切割字符. -f列的第几个参数. -c1-10指定字符串范围行的第一个到第十个. 命令:sort 文件名 #根据第一列第一个字符 ...
- 20175312 2018-2019-2 《Java程序设计》第1周学习总结
20175312 2018-2019-2 <Java程序设计>第1周学习总结 教材学习内容总结 已依照教材要求完成了第一章的学习,我总结的话,主要的学习量还是在安装相关软件上.其他的,比如 ...
- Kaggle比赛NCFM图像分类任务简介
为了保护和监控海洋环境及生态平衡,大自然保护协会(The Nature Conservancy)邀请Kaggle社区的参赛者们开发能够出机器学习算法,自动分类和识别远洋捕捞船上的摄像头拍摄到的图片中鱼 ...
- 编码原则 之 Explicit Dependencies Principle
Explicit Dependencies Principle The Explicit Dependencies Principle states: Methods and classes shou ...
- centos 7 已经开启 22 端口但无法连接
已经开启 22 端口但无法连接 刚买的 vps ,默认 ssh 端口是 29488, 使用以下方式连接ssh -p 29488 root@x.x.x.x觉得加端口有点麻烦, 希望使用默认的 22 端口 ...
- Anaconda环境下安装库
使用anaconda环境下使用pycharm后,有些其他库也想安装,但开始在python.exe目录下安装没成功,因为pycharm用的环境已经不是原始的python.exe解释器了.就总结了一些安装 ...
- redis缓存服务器集群搭建
一.安装redis 1.下载redis [root@redis ~]# wget http://download.redis.io/releases/redis-4.0.11.tar.gz 2.安装编 ...
- U3D外包团队—技术分享 U3d中获得物体的size
以size的x方向为例 1:gameObject.renderer.bounds.size.x;//这个值的结果真实反应出有MeshRenderer这个组件的模型的尺寸.不需要再乘以localScal ...
- day5.am--拷贝构造与拷贝赋值
Array& operator = Array(Array const& that){ //避免自赋值 if(&that != this){ //释放旧资源 if(m_arra ...
- Linux下修改用户的UID、GID
01.用户的UID和GID不能被占用 [root@26 ~]# id mvpuid=503(mvp) gid=503(mvp) groups=503(mvp) ###假定我需要设置mvp的uid/gi ...